关于震源附近流体、热和能量分配问题的研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
作为地震学的基本问题,地震发生过程中震源附近流体、热与能量的分配问题一直是地震学家关注的前沿课题。目前,越来越多的研究表明震源附近存在流体,且流体在地震的孕育、发生过程中起重要作用,但对深部流体的来源尚存较大争议。对于震源区的热问题,自应力热流佯谬提出以来,不同的模型被用于解释热流佯谬相关问题,其中动态弱化被认为可能是解决热流佯谬的关键。摩擦产生的热能与能量分配问题直接相关,大地震发生后,立即进行深钻现场测量对认识地震发生过程中震源附近的流体、摩擦热能及能量分配问题具有时效性和重要现实意义。本文回顾了国际上有关震源附近流体、热及能量分配问题的最新研究进展,这些问题的研究将对认识地震的孕育和发生过程带来重要启示。
As a basic problem in seismology,fluid,heat and energy distribution near earthquake source during earthquake generation has been a leading subject of concern to seismologists.Currently,more and more research shows that there is fluid around earthquake source area and fluid plays an important role in the process of earthquake preparation and generation.But there is considerable controversy about the source of fluid in the deep crust.About the problem of heat around earthquake source area,different models have been proposed to explain related issues since the proposal of heat flow paradox.Among the different models,dynamic weakening model has been thought to be the key to solve the issue of heat flow paradox.After large earthquakes,energy distribution is directly related to friction heat.It is of timely and important practical significance that immediate deep drilling site survey be done for the understanding of fluid,friction heat and energy distribution during earthquake generation.The latest international progress about fluid,heat and energy distribution has been reviewed in this paper with a hope to bring important inspiration for the understanding of earthquake preparation and occurrence.
引文
Agosta F and Kirschner D L,2003,Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy,J Geophys Res,108(B4),2221.
    Agosta F,Mulch A,Chamberlain P et al,2008,Geochemical traces of CO2-rich fluid flow along normal faults in central Italy,Geophysical Journal International,174(2),758~770.
    Agosta F,Prasad M and Aydin A,2007,Physical properties of carbonate fault rocks,fucino basin(Central Italy):implicationsfor fault seal in platform carbonates,Geofluids,7(1),19~32.
    Andrews D J,2002,A fault constitutive relation accounting for thermal pressurization of pore fluid,J Geophys Res,doi:107(B12),ESE15-1~ESE15-8.
    Angerer E,Crampin S,Li X Y et al,2002,Processing,modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir,Geophysical Journal International,149(2),268~281.
    Antonioli A,Piccinini D,Chiaraluce L et al,2005,Fluid flow and seismicity pattern:Evidence from the1997Umbria-Marche(central Italy)seismic sequence,Geophys Res Lett,32(L10311).
    Becken M,Ritter O,Park S K et al,2008,A deep crustal fluid channel into the San Andreas Fault system near Parkfield,California,Geophysical Journal International,173(2),718~732.
    Blanpied M L,Lockner D A and Byerlee J D,1995,Frictional slip of granite at hydrothermal conditions,J Geophys Res,100(B7),13045~13064.
    Boero M,Terakura K,Ikeshoji T et al,2000,Hydrogen Bonding and Dipole Moment of Water at Supercritical Conditions:AFirst-Principles Molecular Dynamics Study,Physical Review Letters,85(15),3245.
    Brodsky E and Kanamori H,2001,Elastohydrodynamic lubrication of faults,J Geophys Res,106(B8),16357~16374.
    Brodsky E E,Rowe C D,Meneghini F et al,2009,A geological fingerprint of low-viscosity fault fluids mobilized during anearthquake,J Geophys Res,114(B1),1~14.
    Brune J,Henyey T and Roy R,1969,Heat Flow,Stress,and Rate of Slip along the San Andreas Fault,California,J GeophysRes,74(15),3821~3827.
    Byerlee J,1990,Friction,overpressure and fault normal compression,Geophys Res Lett,17(12),2109~2112.
    Byerlee J,1993,Model for episodic flow of high-pressure water in fault zones before earthquakes,Geology,21(4),303~306.
    Camfield P A et al,1989,Electromagnetic sounding and crustal electrical conductivity in the region of the Wopmay Orogen,Northwest Territories,Canada,Can J Earth Sci,26(11),2385~2395.
    Chavarria J A,Malin P,Catchings R D et al,2003,A Look Inside the San Andreas fault at Parkfield Through Vertical SeismicProfiling,Science,302(5651),1746~1748.
    Chen C C,Chi S C,Chen C S et al,2007,Electrical structures of the source area of the1999Chi-Chi,Taiwan,earthquake:Spatial correlation between crustal conductors and aftershocks,Tectonophysics,443(3~4),280~288.
    Chiarabba C,Gori P D and Boschi E,2009,Pore-pressure migration along a normal-fault system resolved by time-repeated seismictomography,Geology,37(1),67~70.
    Crampin S,Evans R,Ucer B et al,1980,Observations of dilatancy-induced polarization anomalies and earthquake prediction,Nature,286(5776),874~877.
    Crampin S and Zatsepin S V,1997,Modelling the compliance of crustal rock:II.-Response to temporal changes beforeearthquakes,Geophysical Journal International,129(3),495~506.
    Crampin S,Volti T,Chastin S et al,2002,Indication of high pore-fluid pressures in a seismically-active fault zone,GeophysicalJournal International,151(2),1~5.
    d'Alessio M A,Williams C F and Bürgmann R,2006,Frictional strength heterogeneity and surface heat flow:Implications for thestrength of the creeping San Andreas fault,J Geophys Res,111(B5),1~15.
    Doan M L,Brodsky E E,Kano Y et al,2006,In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault,Taiwan,Geophys Res Lett,33(16),1~5.
    Dvorkin J,Mavko G and Nur A,1999,Overpressure Detection from Compressional-and Shear-Wave data,Geophys Res Lett,26(22),3417~3420.
    Evans J P,Forster C B and Goddard J V,1997,Permeability of fault-related rocks,and implications for hydraulic structure offault zones,Journal of Structural Geology,19(11),1393~1404.
    Forneris J F and Holloway J R,2003,Phase equilibria in subducting basaltic crust:implications for H2O release from the slab,Earth and Planetary Science Letters,214(1~2),187~201.
    Frost B R,Fyfe WS,Tazaki K et al,1989,Grain-boundary graphite in rocks and implications for high electrical conductivity inthe lower crust,Nature,340(6229),134~136.
    Fulton P M,Saffer D M,Harris R N et al,2004,Re-evaluation of heat flow data near Parkfield,CA:Evidence for a weak SanAndreas Fault,Geophys Res Lett,31(15),1~4.
    Glover P W J and Vine F J,1992,Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures,Nature,360(6406),723~726.
    Gunasekera R C,Foulger G R and Julian B R,2003,Reservoir depletion at The Geysers geothermal area,California,shown byfour-dimensional seismic tomography,J Geophys Res,108(B3),2134.
    Hardebeck J L and Hauksson E,1999,Role of Fluids in Faulting Inferred from Stress Field Signatures,Science,285(5425),236~239.
    Hickman S,Sibson R and Bruhn R,1995,Introduction to special section:Mechanical involvement of fluids in faulting,JGeophys Res,100(B7),12831~12840.
    Hickman S and Zoback M,2004,Stress orientations and magnitudes in the SAFOD pilot hole,Geophys Res Lett,31(15),1~4.
    Hyndman R D,Vanyan L L,Marquis G et al,1993,The origin of electrically conductive lower continental crust:saline water orgraphite?Physics of the Earth and Planetary Interiors,81(1~4),325~345.
    Ji C,Helmberger D V,Wald D J et al,2003,Slip history and dynamic implications of the1999Chi-Chi,Taiwan,earthquake,J Geophys Res,108(B9),2412.
    Kanamori H and Heaton T H,2000,Microscopic and Macroscopic Physics of Earthquakes,Geophysical Monograph,120,147~164.
    Kanamori H and Brodsky E E,2004,The physics of earthquakes,Reports on Progress in Physics,67(8),1435~1441.
    Kano Y,Mori J,Ito H et al,2006,Heat signature on the Chelungpu fault associated with the1999Chi-Chi,Taiwan earthquake,Geophys Res Lett,33(14),1~4.
    Karato S,1990,The role of hydrogen in the electrical conductivity of the upper mantle,Nature,347(6290),272~273.
    Katsube T J and Mareschal M,1993,Petrophysical Model of Deep Electrical Conductors:Graphite Lining as a Source and ItsDisconnection Due to Uplift,J Geophys Res,98(B5),8019~8030.
    Kennedy B M et al,1997,Mantle Fluids in the San Andreas Fault System,California,Science,278(5341),1278~1281.
    Kerrich R,Tour T L and Willmore L,1984,Fluid Participation in Deep Fault Zones:Evidence From Geological,Geochemical,and18O/16O Relations,J Geophys Res,89(B6),4331~4343.
    Lachenbruch A and Sass J,1980,Heat Flow and Energetics of the San Andreas Fault Zone,J Geophys Res,85(B11),6185~6222.
    Lachenbruch A and Sass J,1988,The Stress Heat-Flow Paradox and Thermal Results from Cajon Pass,Geophys Res Lett,15(9),981~984.
    Lachenbruch A and Sass J,1992,Heat Flow From Cajon Pass,Fault Strength,and Tectonic Implications,J Geophys Res,97(B4),4995~5015.
    Lewicki J L and Brantley S L,2000,CO2Degassing along the San Andreas Fault,Parkfield,California,Geophys Res Lett,27(1),5~8.
    Lewicki J L,Evans W C,Hilley G E et al,2003,Shallow soil CO2flow along the San Andreas and Calaveras Faults,California,J Geophys Res,108(B4),2187.
    Liu Y,Crampin S and Main I,1997,Shear-wave anisotropy:spatial and temporal variations in time delays at Parkfield,CentralCalifornia,Geophysical Journal International,130(3),771~785.
    Lockner D,Naka H,Tanaka H et al,2000,Permeability and strength of core samples from the Nojima Fault of the1995KobeEarthquake.in Proceedings of the International Workshop on the Nojima Fault Core and Borehole Data Analysis,U.S,GeolSurv Open File Rep,00~129,147~152.
    Lockner D A and Beeler N M,2002,Rock failure and earthquakes.In:W.H.K.Lee,P.Jennings,C.Kisslinger and H.Kanamori(Editors),International Handbook of Earthquake&Engineering Seismology,Part A.CA:Academic,San Diego,505~537.
    Lu K,Brodsky E E and Kavehpour H P,2007,Shear-weakening of the transitional regime for granular flow,Journal of FluidMechanics,587(1),347~372.
    Ma K F,Brodsky E E,Mori J et al,2003,Evidence for fault lubrication during the1999Chi-Chi,Taiwan,earthquake(MW7.6),Geophys Res Lett,30(5),1244.
    Ma K F,Lee C T,Tsai Y B et al,1999,The1999ChiChi,Taiwan(ML=7.3,MW=7.7)Earthquake-Large SurfaceDisplacement on an Inland Thrust-fault,EOS Transactions,80,605~611.
    Mareschal M,Fyfe W S,Percival J et al,1992,Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity,Nature,357(6380),674~676.
    Marquis G and Hyndman R D,1992,Geophysical support for aqueous fluids in the deep crust:seismic and electricalrelationships,Geophysical Journal International,110(1),91~105.
    McPhee D K,Jachens R C and Wentworth C M,2004,Crustal structure across the San Andreas Fault at the SAFOD site frompotential field and geologic studies,Geophys Res Lett,31(L12S03),1~4.
    Miller S A,1996,Fluid-mediated influence of adjacent thrusting on the seismic cycle at Parkfield,Nature,382(6594),799~802.
    Miller S A,Collettini C,Chiaraluce L et al,2004,Aftershocks driven by a high-pressure CO2source at depth,Nature,427,724~727.
    Moore D E,Lockner D A,Shengli M et al,1997,Strengths of serpentinite gouges at elevated temperatures,J Geophys Res,102(B7),14787~14801.
    Moore D E and Rymer M J,2007,Talc-bearing serpentinite and the creeping section of the San Andreas fault,Nature,448(7155),795~797.
    Nur A,1972,Dilatancy,pore fluids,and premonitory variations of ts/tp travel times,Bulletin of the Seismological Society ofAmerica,62(5),1217~1222.
    O'Connell R J and Budiansky B,1974,Seismic Velocities in Dry and Saturated Cracked Solids,J Geophys Res,79(35),5412~5426.
    Padhy S and Crampin S,2006,High pore-fluid pressures at Bhuj,inferred from90-flips in shear-wave polarizations,GeophysicalJournal International,164(2),370~376.
    PatanèD,Barberi G,Cocina O et al,2006,Time-resolved seismic tomography detects magma intrusions at Mt.Etna,Science,313,821~823.
    Peacock S A,1990,Fluid Processes in Subduction Zones,Science,248(4953),329~337.
    Peacock S,Crampin S,Booth D C et al,1988,Shear Wave Splitting in the Anza Seismic Gap,Southern California:TemporalVariations as Possible Precursors,J Geophys Res,93(B4),3339~3356.
    Poliakoff M and King P,2001,Phenomenal fluids,Nature,412(6843),125~125.
    Prejean S G and Ellsworth W L,2001,Observation of earthquake source parameters and attenuation at2km depth in the LongValley Caldera,Eastern California,Bulletin of the Seismological Society of America,91,165~177.
    Rice J R,1992,Fault stress states,pore pressure redistributions,and the weakness of the San Andreas fault.In:B.Evans andT.-F.Wong(Editors),Fault Mechanics and Transport Properties of Rock.Academic Press,London,pp.476~503.
    Rice J R,2006,Heating and weakening of faults during earthquake slip,J Geophys Res,111(B5),1~29.
    Saffer D M,Bekins B A and Hickman S,2003,Topographically driven groundwater flow and the San Andreas heat flow paradoxrevisited,J Geophys Res,108(B5),ETG12-1~ETG12-14.
    Sagy A and Brodsky E E,2009,Geometric and rheological asperities in an exposed fault zone,J Geophys Res,114(B2),1~15.
    Scholz C H,2000,Evidence for a strong San Andreas fault,Geology,28(2),163~166.
    Scholz C H,2002,The debate on the strength of crustal fault zones,In:The Mechanics of Earthquakes and Faulting,CambridgeUniv Press,New York,158~167pp.
    Sibson R H,1981,Controls on low-stress hydro-fracture dilatancy in thrust,wrench and normal fault terrains,Nature,289(5799),665~667.
    Sibson R H,1990,Rupture nucleation on unfavorably oriented faults,Bulletin of the Seismological Society of America,80(6A),1580~1604.
    Simpson R W,Jachens R C and Wentworth C M,1988,Average topography,isostatic residual gravity,and aeromagnetic maps ofthe Parkfield region,California.U.S.Geol Surv Open File Rep,13.
    Sibson R H,2002,Geology of the crustal earthquake source.In:W.H.K.Lee,P.Jennings,C.Kisslinger and H.Kanamori(Editors),International Handbook of Earthquake&Engineering Seismology,Part A.CA:Academic,San Diego,455~470.
    Sirbescu M L C and Nabelek P I,2003,Crustal melts below400℃,Geology,31(8),685~688.
    Spikes H,1997,Mixed lubrication——an overview,Lubric Sci,(9),221~253.
    Spray J G,2005,Evidence for melt lubrication during large earthquakes,Geophys Res Lett,32(L07301),doi:10.1029/2004GL022293.
    Tanaka H,2006,Frictional heat from faulting of the1999Chi-Chi,Taiwan earthquake,Geophys Res Lett,33(16),1~5.
    Tatsumi Y,1989,Migration of fluid phases and genesis of basalt magmas in subduction zones,J Geophys Res,94(B4),4697~4707.
    Terada T,1930,On the heat generated by the deformation of the earth crust,Bull Earthquake Res Inst Univ,Tokyo,377~383pp.
    Tsutsumi A,2004,Principal fault zone width and permeability of the active Neodani fault,Nobi fault system,Southwest Japan,Tectonophysics,379(1~4),93~108.
    Uehara S I and Shimamoto T,2004,Gas permeability evolution of cataclasite and fault gouge in triaxial compression andimplications for changes in fault-zone permeability structure through the earthquake cycle,Tectonophysics,378(3~4),183~195.
    Ulmer P and Trommsdorff V,1995,Serpentine Stability to Mantle Depths and Subduction-Related Magmatism,Science,268(5212),858~861.
    Unsworth M J,Malin P E,Egbert G D et al,1997,Internal structure of the San Andreas fault at Parkfield,California,Geology,25(4),359~362.
    Vredevoogd M A,Oglesby D D and Park S K,2007,Fluid pressurization due to frictional heating on a fault at a permeabilitycontrast,Geophys Res Lett,34(L18304).
    Wang C Y,1984,On the constitution of the San Andreas fault,J Geophys Res,89,58~66.
    Wang J H,2002,A Dynamic Study of Two One-State-Variable,Rate-Dependent,and State-Dependent Friction Laws,Bulletin ofthe Seismological Society of America,92(2),687~694.
    Wang J H,2006,Energy release and heat generation during the1999MS7.6Chi-Chi,Taiwan,earthquake,J Geophys Res,111(B11312),doi:10.1029/2005JB004018.
    White D E,Barnes I and O'Neil J R,1973,Thermal and Mineral Waters of Nonmeteoric Origin,California Coast Ranges,Geological Society of America Bulletin,84(2),547~560.
    Wibberley C A J and Shimamoto T,2005,Earthquake slip weakening and asperities explained by thermal pressurization,Nature,436(7051),689~692.
    Wiersberg T and Erzinger J,2007,A helium isotope cross-section study through the San Andreas Fault at seismogenic depths,Geochem Geophys Geosyst,8(Q01002).
    Williams C F and Narasimhan T N,1989,Hydrogeologic constraints on heat flow along the San Andreas fault:a testing ofhypotheses,Earth and Planetary Science Letters,92(2),131~143.
    Wilson B,Dewers T,Reches Z E et al,2005,Particle size and energetics of gouge from earthquake rupture zones,Nature,434(7034),749~752.
    Zatsepin S V and Crampin S,1997,Modelling the compliance of crustal rock:I-Response of shear-wave splitting to differentialstress,Geophysical Journal International,129(3),477~494.
    Zhao D,Kanamori H,Negishi H et al,1996,Tomography of the Source Area of the1995Kobe Earthquake:Evidence for Fluidsat the Hypocenter?Science,274(5294),1891~1894.
    Zoback M,Hickman S and Ellsworth W,2006,Structure and properties of the San Andreas fault in central California:preliminaryresults from the SAFOD experiment,Geophys Res Abstracts,8:EGU.
    Zoback M D,Zoback M L,Mount V S et al,1987,New Evidence on the State of Stress of the San Andreas Fault System,Science,238(4830),1105~1111.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心