温州瓯江口浅滩地区越洋海啸影响评估计算
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
日本"3.11"地震海啸事件发生后,为了避免灾难重演,各滨海国家在加强海啸基础理论研究、改进海啸预警系统的同时,还应对沿海重大工程及重点保障目标进行地震海啸灾害风险排查及再评估工作;对在建的重大基础设施和社会经济功能区划应进行全面的地震海啸安全论证。在此背景下,该文首先概括总结了我国东南沿海的地震海啸风险及历史海啸事件时空分布,简要介绍了越洋海啸传播特征。海啸源选取基于潜在可能最大海啸,选取环太平洋地震带上的潜在地震海啸源,进行温州瓯江口地区越洋海啸影响评估计算。海啸数值计算模型采用美国康奈尔大学的COMCOT模型,利用该模型对2010年智利海啸、2011年日本海啸进行了近场、远场模拟验证,计算结果与观测数据吻合良好,模型可信。应用联合国教科文组织政府间海洋学委员会(UNESCO/IOC)太平洋海啸预警系统的海啸危险性等级标准,结合评估计算结果,对瓯江口浅滩地区海啸危险性进行等级划分,获得了该地区的海啸危险性初步评估结果。结果表明:在所选的10个潜在或历史海啸源产生的越洋海啸对研究区域的影响均小于100 cm,此规模的海啸不易对该地区造成灾害性影响。研究结果对于指导该地区的海啸灾害风险评估及风险排查具有一定的参考价值。
Since the 3·11 Japan tsunami event,most of coastal countries not only strengthened theoretical research on physical mechanism of tsunami,but also improved tsunami warning system.In addition,tsunami hazards investigation and reevaluation has been carried out for major project and important guarantee objective along China’s coast.Moreover,the major infrastructure projects and socio-economic function zoning should be comprehensively evaluted for tsunami hazards.In this paper,the temporal and spatial distribution characteristics of tsunami hazards were reviewed for China South-East coastal areas.A brief introduction about the propagation characteristic of transoceanic tsunami was given.Tsunami sources were base on the potential earthquake,which was selected on the circum-Pacific seismic belt.Assessment calculations were implemented by determined tsunami sources to evaluate tsunami hazards for the study area.COMCOT model,developed by Cornell University,was used in this paper.The model was validated by 2010 Chile tsunami and 2011 Japan tsunami.The near-field and far-field simulation results agreed well with the observation data.We referred the new tsunami hazard rank criteria recommended by UNESCO/IOC.Tsunami hazards classifications were divided for the shoal area of Oujiang estuary by analyzing the simulation results.Preliminary assessment results for tsunami hazards have been completed in the paper.The assessment results showed that the maximum amplitude generated from the selected 10 potential tsunami sources was less than 100cm,indicating that the potential tsunami in this region could not cause severe impact.The results will be benefit to guide tsunami disaster risk assessment and investigation for the study region.
引文
[1]陈运泰,杨智娴,许力生.海啸、地震海啸与海啸地震[J].物理,2005,34(12):864-872.
    [2]姚远,蔡树群,王盛安.海啸波数值模拟的研究现状[J].海洋科学进展,2007,25(4):487-494.
    [3]王培涛,赵联大,于福江,等.海啸灾害数值预报技术研究现状[J].海洋预报,2011,28(3):74-79.
    [4]陈虹,李成日.印尼8.7级地震海啸灾害及应急救援[J].国际地震动态,2005,316(4):22-26.
    [5]Kenji S,ThanTA.Report On PostTsunami SurveyAlongThe Myan-mar Coast For The December 2004 Sumatra-AndamAn Earthquake[R].ActiveFaults-PaleoseismicStudy,2005(5):161-188.
    [6]任叶飞.基于数值模拟的我国地震海啸危险性分析研究[D].哈尔滨:中国地震局工程力学研究所,2007.
    [7]褚芹芹.印尼海啸过程数值模拟研究及其风险评估[D].青岛:中国海洋大学,2011.
    [8]于福江,王培涛,赵联大,等.2010年智利地震海啸数值模拟及其对我国沿海的影响分析[J].地球物理学报,2011,54(4):918-925.
    [9]于福江,原野,赵联大,等.2010年2月27日智利8.8级地震海啸对我国的影响分析[J].科学通报,2011,56(3):239-246.
    [10]Andrew V N,Gavin H,Wei Y,et al.The 25 October 2010 Mentawaitsunami earthquake from real-time discriminants,finite-fault rup-ture and tsunami excitation[J].Geophysical Research Letters,2011,38,L05302,doi:10.1029/2010GL046198.
    [11]温瑞智,任叶飞,李小军.日本Mw9.0级地震海啸数值模拟与启示[J].国际地震动态,2011,388(4):22-27.
    [12]王培涛,于福江,赵联大,等.2011年3月11日日本地震海啸越洋传播及对中国影响的数值分析[J].地球物理学报,2012,55(9):3088-3096.
    [13]吴佳晔.日本东北大地震对我们的警示[J].四川理工学院学报(自然科学版),2011,24(2):125-128.
    [14]Nobuhito M,TomoyukiT,TomohiroY,et al.Survey of 2011Tohokuearthquaketsunamiinundationandrun-up[J].GeophysicalResearchLetters,Vol.38,L00G14,6PP,2011.doi:10.1029/2011GL049210.
    [15]吴新燕,苗崇刚,顾建华,等.日本东海岸9.0级地震应对给我国地震应急的启示[J].国际地震动态,2011,388(4):38-43.
    [16]王培涛,于福江,赵联大,等.越洋海啸的数值模拟及其对我国的影响分析[J].海洋学报,2012,34(2):39-47.
    [17]赵联大,于福江,王培涛.我国的海啸风险与预警.国家综合防灾减灾与可持续发展论坛文集(上)[C].国家减灾委专家委员会.中国.北京:2010年5月:363-367.
    [18]Liu L F,Wang X M,Salisbury A J.Tsunami hazard and earlywarning system in South China Sea[J].Journal of Asian EarthSciences,2009,36(1):2-12.
    [19]李林燕,毛献忠.南海海啸反问题预报模式[J].水动力学研究与进展(A辑),2012,27(1):62-67.
    [20]Rhodes B,Tuttle M,Horton B,et al.Paleotsunami research[J].EOS Trans AGU,2006,87(21):205-209.
    [21]Intergovernmental Oceanographic Commission.Tsunami Glossa-ry[K].Paris,UNESCO.IOC Technical Series,2008.
    [22]祝会兵.海啸模型研究进展(I)[J].宁波大学学报(理工版),2006,19(4):536-541.
    [23]张超凡,石耀霖.海啸灾害的数值模拟研究[J].中国科学院研究生院学报,2008,25(3):289-296.
    [24]Mansinha L,Smylie D E.The displacement fields of inclinedfaults[J].Bulletin of the Seismological Society of America,1971,61(5):1433-1440.
    [25]Okada,Y,Surface deformation due to shear and tensile faults in ahalf-space[J].Bulletin of the Seismological Society of America,1985,75(4),113-1154.
    [26]Titov V V,Gonzalez F I.Implementation and testing of the methodof Splitting Tsunami(MOST)model[R].NOAA Technical Memo-randum ERL,1997.
    [27]Titov V V,Numerical modeling of long wave run-up[D].LosAnge-les:University of Southern California,1997.
    [28]Wang X M.USER MANUAL FOR COMCOT VERSION 1.7[K].CornellUniversity,2009.
    [29]Wang X M,Liu L F.An analysis of 2004 sumatra earthquake faultplane mechanisms and indian ocean tsunami[J].J Hydraulic Res,2006,44(2):147-154.
    [30]Wang X M,Liu L F.Numerical simulations of the 2004 indianocean tsunamis coastal effects[J].Journal of Earthquake and Tsu-nami,2007,1(3):273-297.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心