白云母对岩盐断层带摩擦速度依赖性影响的实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为更好地理解层状硅酸盐对断层强度、滑动速度依赖性及地震活动特征的影响,利用双轴摩擦实验对含白云母岩盐断层带在干燥及含水条件下摩擦的速度依赖性进行了实验研究,并观测了摩擦滑动过程中的声发射,分析了断层带的微观结构。实验结果表明,干燥条件下含白云母岩盐断层带在0.1~100μm/s的速度范围内表现为黏滑和速度弱化,增大σ2会使断层带从速度弱化向速度强化转化,速度依赖性转换出现在0.1μm/s,其中断层滑动表现为稳滑或应力释放时间较长的黏滑事件;含水条件下含白云母岩盐断层带在0.05~0.01μm/s的速度范围内表现为速度强化,0.1~10μm/s的速度范围内表现为速度弱化,50~100μm/s的速度范围内又转换为速度强化行为。含白云母岩盐断层带在干燥条件下一次黏滑伴随一个或一丛声发射事件,而在含水条件下与稳滑相对应,滑动过程中并未记录到声发射事件。显微结构观察表明,速度弱化域的主要变形机制是岩盐颗粒的脆性破裂和局部化的滑动;干燥条件下,速度强化域的主要变形机制是岩盐颗粒的均匀破裂;含水条件下2个速度强化域对应不同的微观机制,高速域的速度强化受控于岩盐颗粒在白云母相互连结形成的网状结构上的滑动及其均匀碎裂作用,而低速域的速度强化还受岩盐的压溶作用控制。通过与岩盐断层带摩擦实验结果对比可知,白云母的存在对干燥岩盐断层带摩擦滑动方式和速度依赖性没有显著影响,而在含水条件下白云母的存在使得岩盐断层带滑动趋于稳定。实验结果为分析含层状硅酸盐断层的强度和稳定性提供了依据。此外,在速度依赖性转换域上观察到的应力缓慢释放的现象进一步证实了在岩盐断层带摩擦滑动过程中观察到的现象,这对慢地震机制研究具有参考意义。
In order to better understand the effect of phyllosilicate on fault strength,velocity-dependence of friction and seismicity,the velocity-dependence of friction for dry and wet muscovite-bearing halite gouge was studied by using biaxial friction configuration.Acoustic emission produced during the frictional sliding was recorded,and the microstructure of gouge zone was observed.The experiments show that dry gouge behaves stick-slip and velocity weakening at velocities of 0.1 ~ 100μm/s;Increasing σ2 can enhance the transition to velocity strengthening and velocity-dependence transition occurs at velocity of 0.1μm/s,where fault behaves either stable sliding or stick-slip with much longer time than that in the velocity weakening region.Wet gouge behaves velocity strengthening at velocities of 0.05 ~ 0.01μm/s,velocity weakening at velocities of 0.1 ~ 10μm/s,and velocity strengthening again at velocities of 50 ~ 100μm/s.Each stick-slip event corresponds to one or a cluster of AE events for dry gouge,while there is no AE event corresponding to stable sliding for wet gouge.The microscope observation indicates that brittle fracturing and localized slip are predominant in the velocity weakening region and the velocity strengthening is controlled by distributed fracturing of halite under dry condition.While under wet condition,the two velocity strengthening regions correspond to different mechanisms.At higher velocities,the deformation of fault may be controlled by frictional sliding on the network developed by muscovite and uniform fragmentation of halite,and at lower velocities,the deformation of fault is also controlled by pressure solution of halite.Comparing to the results of halite gouge,it can be seen that the existence of muscovite has no effect on sliding mode and velocitydependence for dry halite gouge,while it enhances the transition to stable sliding for wet halite gouge.The results we got provide basis for analyzing strength and stability of phyllosilicate-bearing faults.The stick-slip with longer time at transitional region confirms what observed in frictional experiments of halite gouge,which is significant for understanding mechanism of slow earthquakes.
引文
何昌荣,周永胜,桑祖南.2002.四川攀枝花辉长岩半脆性-塑性流变的实验研究[J].中国科学(D辑),32(9):717—726.HE Chang-rong,ZHOU Yong-sheng,SANG Zu-nan.2002.The experimental study of semibrittle-plastic rheology ofPanzhihua gabbro in Sichuan Province[J].Science in China(Ser D),32(9):717—726(in Chinese).
    刘力强,马胜利,马瑾,等.1999.岩石构造对声发射统计特征的影响[J].地震地质,21(4):377—386.LIU LI-qiang,MA Sheng-li,MA Jin,et al.1999.Effect of rock structure on statistic characteristics of acoustic emission[J].Seismology and Geology,21(4):377—386(in Chinese).
    马胜利,Lockner D,Moore D,等.1997.水热作用条件下蛇纹石断层泥的摩擦强度和速度依赖性及其地震地质意义[J].地震地质,19(2):171—178.MA Sheng-li,Lockner D,Moore D,et al.1997.Frictional strength and velocity-dependence of serpentine gouges underhydrothermal conditions and their seismogelogical implications[J].Seismology and Geology,19(2):171—178(in Chinese).
    缪阿丽,马胜利,侯林峰,等.2012.岩盐断层带摩擦滑动的速度依赖性转换及其地震学意义[J].地球物理学报,(出版中).MIAO A-li,MA Sheng-li,HOU Lin-feng,et al.2012.Velocity-dependence transition of friction for halite gouge and itssignificance in seismology[J].Chinese J Geophys,(in press).
    Bartlett W L,Friedman M,Logan J M.1981.Experimental folding and faulting of rocks under confining pressure[J].Tectonophysics,79:255—277.
    Blacic J D,Christle J M.1984.Plasticity and hydrolytic weakening of quartz single crystals[J].J Geophys Res,89(B6):4223—4239.
    Blanpied M L,Lockner D A,Byerlee J D.1995.Frictional slip of granite at hydrothermal conditions[J].J GeophysRes,100(B7):13045—13064.
    Bos B,Peach C J,Spiers C J.2000.Frictional-viscous flow of simulated fault gouge caused by the combined effects ofphyllosilicates and pressure solution[J].Tectonophysics,327:173—194.
    Bos B,Spiers C J.2001.Experimental investigation into the microstructural and mechanical evolution of phyllosilicatebearing fault rock under conditions favouring pressure solution[J].Journal of Structural Geology,23:1187—1202.
    Bos B,Spiers C J.2002.Frictional-viscous flow of phyllosilicate-bearing fault rock:Microphysical model andimplications for crustal strength profiles[J].J Geophys Res,107(B2):10.1029/2001JB000301.
    Boutareaud S,Fabbri O,Calugaru D,et al.2008.Clay-clast aggregates:A new textural evidence for seismic faultsliding?[J].Geophys Res Lett,35,L05302.doi:10.1029/2007GL032554.
    Byerlee J D.1967.Frictional characteristics of granite under high confining pressure[J].J Geophys Res,72:3639—48.
    Byerlee J D.1978.Friction of rocks[J].Pure Appl Geophys,116:615—629.
    Collettini C,Niemeijer A,Viti C,et al.2009.Fault zone fabric and fault weakness[J].Nature,462:907—910.doi:10.1038/nature08585.
    Dieterich J H.1979.Modelling of rock friction:1.Experimental results and constitutive equations[J].J Geophys Res,84:2161—2168.
    Dieterich J H,Conrad G.1984.Effect of humidity on time-and velocity-dependent friction in rocks[J].J GeophysRes,89:4196—202.
    Di Toro G,Hirose T,Nielsen S,et al.2006.Natural and experimental evidence of melt lubrication of faults duringearthquakes[J].Science,311:647—649.
    Hansen F D,Carter N L.1983.Semibrittle creep of dry and wet Westly granite at1000MPa[A].U S24th Symp onRock Mechanics.Texas A&M Univ,College Station,Tes,429—447.
    Holdsworth R E.2004.Weak faults-rotten cores[J].Science,303:181—182.
    Imber J,Holdsworth R E,Butler C A,et al.2001.A reappraisal of the Sibson-Scholz fault zone model:The nature of thefrictional to viscous(“brittle-ductile”)transition along a long-lived,crustal-scale fault,Outer Hebrides,Scotland[J].Tectonics,20(5):601—624.
    Moore D E,Lockner D A.2008.Talc friction in the temperature range25~400℃relevance for fault-zone weakening[J].Tectonophysics,449:120—132.
    Moore D E,Lockner D A,Ma Shengli,et al.1996.Strength of chrysotile-serpentinite gouge under hydrothermalconditions:Can it explain a weak San Andreas Fault?[J].Geology,24(11):1041—1044.
    Moore D E,Lockner D A,Ma Shengli,et al.1997.Strengths of serpentinite gouges at elevated temperatures[J].JGeophys Res,102:14,787—14,801.
    Moore D E,Lockner D A,Tanaka H,et al.2004.The coefficient of friction of chrysotile gouge at seismogenic depths[A].In:Ernst,W G(ed)Serpentine and Serpentinites:Mineralogy,Petrology,Geochemistry,Ecology,Geophysics,and Tectonics.Geol Soc Am Internat Book Ser,l(8):525—538.
    Moore D E,Rymer M.2007.Talc-bearing serpentinites and the creeping section of the San Andreas Fault[J].Nature,448:795—797.doi:10.1038/nature06064.
    Niemeijer A R,Spiers C J.2006.Velocity dependence of strength and healing behaviour in simulated phyllosilicatebearing fault gouge[J].Tectonophysics,427:231—253.
    Reinen L A,Weeks J D,Tullis T E.1991.The frictional behavior of serpentinite:Implications for aseismic creep onshallow crustal faults[J].Geophys Res Lett,18:1921—1924.
    Reinen L A,Weeks J D,Tullis T E.1994.The frictional behavior of lizardite and antigorite serpentinites:Experiments,constitutive models,and implications for natural faults[J].Pure Appl Geophys,143:317—358.
    Ruina A L.1983.Slip instability and state variable friction[J].J Geophys Res,88:10359—10370.
    Scholz C H.2002.The Mechanics of Earthquakes and Faulting(2nd Edition)[M].Cambridge University Press.1—508.
    Scruggs V J,Tullis T E.1998.Correlation between velocity dependence of friction and strain localization in largedisplacement experiments on feldspar,muscovite and biotite gouge[J].Tectonophysics,295:15—40.
    Van Diggelen E W E,De Bresser J H P,Peach C J,et al.2009.High shear strain behavior of synthetic muscovite faultgouges under hydrothermal conditions[J].J Struct Geol,32(11):1685—1700.doi:10.1016/j.jsg.2009.08.020.
    Wibberley C A J,Shimamoto T.2005.Earthquake slip weakening and asperities explained by thermal pressurization[J].Nature,436:689—692.
    Wibberley C A J,Kurz W,Imber J,et al.2008.The internal structure of fault zones:Implications for mechanical andfluid-flow properties[M].Geological Society of London,Special Publication,299:151—173.
    Wilks K R,Carter N L.1990.Rheology of some continental lower crustal rocks[J].Tectonophysics,182:57—77.
    Wintsch R P,Christoffersen R,Kronenberg A K.1995.Fluid-rock reaction weakening of fault zones[J].J GeophysRes,100:13021—13032.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心