首都圈西部盆岭构造区地热水水文地球化学研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据水化学组分和氢、氧同位素数据,讨论了首都圈西部盆岭构造区断裂带地下热水的化学类型及其形成过程。结果显示,水样的TDS为225~1449mg/L,δ18 O和δD值分别为-12.42‰~-9.54‰,-90.8‰~-71.88‰。水的循环受盆岭构造区中的断裂和水头压力控制。Na-SO4型水主要出现在片麻岩和花岗岩裂隙中,由深循环过程中长石类矿物水解和硫化物的氧化作用形成。Na.Ca-HCO3型水主要分布在含泥质条带互层的碳酸盐岩储层中,受方解石和白云石溶解、泥质条带中的易溶盐淋滤作用和与粘土矿物的Na-Ca离子交换的控制。第四系砂砾石含水层热水水化学类型较复杂,有Ca.Mg-HCO3,Na.Ca-HCO3,Na-HCO3,Na-HCO3.SO4.Cl,Na-HCO3.Cl,Na-SO4.Cl等,这可归因于含水层深度、断裂性质、沉积物粒度和岩性等因素。δ18 O和δD指示地热水来源于大气降水。δD值随地下水温度升高而降低的特征可能由深层古水和浅层地下水的混合作用或是同位素交换反应导致。镇川堡103℃热水的δ18 O和δD受水岩反应和蒸汽散失的共同作用。本研究对地热水开发和地震监测方面有一定应用价值。
Chemical types and origins of geothermal waters in the basin and range province of the west region of Beijing are discussed.Ion compositions were detected by Dionex IC-900 Ion Chromatography and titration.δ18O and δD of the water samples were measured with the Picarro L1102 Isotope Detector.The TDS of the thermal waters are in the range of 225~1449 mg/L.The Na-SO4 type waters are from fractures in gneisses and granites,which may originate from feldspar hydrolysis and sulfide oxidation in the deep circulation of waters which is controlled by faults and head pressure.The Na·Ca-HCO3 type waters are from carbonates with interbedding argillite,resulting from dissolving calcite,dolomite,and cation exchange.However,the geothermal waters from Quaternary aquifers of different depths and locations in the basin are geochemically different(Ca·Mg-HCO3,Na·Ca-HCO3,Na-HCO3,Na-HCO3·SO4·Cl,Na-HCO3·Cl,Na-SO4·Cl),which can be attributed to ion exchanging with different rocks,aquifer depths,or fault features.The values of δ18O and δD range from-12.4 to-9.5‰ and from-90 to-72‰,respectively,indicating an origin of meteoric water.The negative correlation of δD and groundwater temperature probably implies mixing of ancient and modern groundwater or isotope exchange reactions underground.Water-rock interaction and steam loss are deduced to have a profound impact on the values of δ18O and δD in a geothermal well in Tianzhen of 103℃.The results can be applied to geothermal development and earthquake monitoring.
引文
[1]Giggenbach W F.Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J].Geochim.Cosmochim.Acta,1988,52:2749-2765.
    [2]Lipfert G,Reeve A S,Sidle W C,Marvinney R.Geochemical patterns of arsenic-enriched ground water in fractured,crystal-line bedrock,Northport,Maine,USA[J].Appl.Geochem.,2006,21:528-545.
    [3]Alagbe S A.Groundwater resources of river Kan Gimi Basin,north-central Nigeria[J].Environ.Geol.,2002,42:404-413.
    [4]Siegel D I,Lesniak K A,Stute M,Frape S.Isotopic geo-chemistry of the Saratoga springs:Implications for the origin of solutes and source of carbon dioxide[J].Geology,2004,32:257-260.
    [5]Boschetti T,Toscani L.Springs and streams of the Taro–Ceno Valleys(Northern Apennine,Italy):Reaction path modeling of waters interacting with serpentinized ultramafic rocks[J].Chem.Geol.,2008,257:76-91.
    [6]Bucher K,Zhang L,Stober I.A hot spring in granite of the Western Tianshan,China[J].Appl.Geochem.,2009,24:402-410.
    [7]Hausrath E M,Neaman A,Brantley S L.Elemental releaserates from dissolving basalt and granite with and without or-ganic ligands[J].Am.J.Sci.,2009,309:633-660.
    [8]Wang G,Zhang Z,Wang M,Cravotta C,Liu C.Implications of ground water chemistry and flow patterns for earthquake studies[J].Ground Water,2005,43:478-484.
    [9]王基华,林元武,刘成龙,刘五洲.张家口南部地区温泉形成的氢氧同位素及气体组成证据[J].水文地质工程地质,2000,4:30-33.
    [10]Wang Y,Shvartsev S L,Su C.Genesis of arsenic/fluoride-enriched soda water:A case study at Datong,northern China[J].Appl.Geochem.,2009,24:641-649.
    [11]Han D M,Liang X,Jin M G,Currell M J,Song X F,Liu C M.Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal sys-tems,Xinzhou Basin[J].J.Volcanol.Geotherm.Res.,2010,189:92-104.
    [12]徐锡伟.山西地堑系的新构造活动特征及其形成机制[D].北京:中国地震局地质研究所,1989.
    [13]张红艳,谢富仁,荆振杰.京西北盆岭构造区现代构造应力场的非均匀特征[J].地球物理学报,2009,52:3061-3071.
    [14]Piper A M.A graphic procedure in the geochemical interpre-tation of water-analyses[J].Eos Trans.AGU,1944,25:914-923.
    [15]Stober I,Bucher K.Deep groundwater in the crystalline basement of the Black Forest region[J].Appl.Geochem.,1999,14:237-254.
    [16]Michard G D,Pearson F J,Gautschi A.Chemical evolution of waters during long term interaction with granitic rocks in Northern Switzerland[J].Appl.Geochem.,1996,11:757-774.
    [17]Pastorelli S,Marini L,Hunziker J.Chemistry,isotope val-ues(δD,δ18 O,δ34 S SO 4)and temperatures of the water in-flows in two Gotthard tunnels,Swiss Alps[J].Appl.Geo-chem.,2001,16:633-649.
    [18]Curewitz D,Karson J A.Structural settings of hydrothermal outflow:Fracture permeability maintained by fault propaga-tion and interaction[J].J.Volcanol.Geotherm.Res.,1997,79:149-168.
    [19]宋贯一,易立新,宋晓冰.地下热水对断裂活动与地震活动的影响研究[J].地震学报,2000,22:632-636.
    [20]梅冥相,马永生,周洪瑞,杜本明,罗志清,郭庆银.雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用[J].地球学报,2001,22:429-436.
    [21]郑秀清,李义明,陈忠,靳贵禄,董忠义.阳高天镇盆地马圈庠地下热水系统[J].太原理工大学学报,2000,31:68-71.
    [22]Zhu C,Sverjensky D A.Partioning of F-Cl-OH between min-erals and hydrothermal fluids[J].Geochim.Cosmochim.Ac-ta,1991,55:1837-1858.
    [23]Markl G,Bucher K.Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks[J].Nature,1998,391:3.
    [24]Stober I,Bucher K.Origin of salinity of deep groundwater in crystalline rocks[J].Terra Nova,1999,11:5.
    [25]Stumm W,J.J.M.Aquatic chemistry:Chemical equilibria and rates in natural waters(3rd edition)[M].New York:John Wiley and Sons,1996:1022.
    [26]袁宝印,朱日祥,田文来,崔久旭,李容全,王强,严富华.泥河湾组的时代、地层划分和对比问题[J].中国科学(D辑),1996,26:67-73.
    [27]张人权,梁杏,靳孟贵,万力,于青春.水文地质学基础(第六版)[M].北京:地质出版社,2011:64.
    [28]Craig H.Isotopic variations in meteoric waters[J].Science,1961,133:1702-1703.
    [29]Liu J,Song X,Yuan G,Sun X,Liu X,Wang S.Character-istics ofδ18 O in precipitation over Eastern Monsoon China and the water vapor sources[J].Chinese Sci.Bull.,2009,55:200-211.
    [30]汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993.
    [31]陈宗宇,张光辉,聂振龙,南云驹.中国北方第四系地下水同位素分层及其指示意义[J].地球科学--中国地质大学学报,2002,27:97-104.
    [32]邓文平,余新晓,贾国栋.华北地区大气降水稳定同位素特征与水汽来源[J].矿物岩石地球化学通报,2012,31:489-494.
    [33]Sheppard S M F,Gilg H A.Stable isotope geochemistry of clay minerals[J].Clay Minerals,1996,31:1-24.
    [34]Coveney R M,Goebel E D,Zeller E J,Dreschhoff G A M,Angino E E.Serpentinization and the origin of hydrogen gas in Kansas.AAPG Bull.,1987,71:39-48.
    [35]Manning D A C,Hutcheon I E.Distribution and mineralogi-cal controls on ammonium in deep groundwaters[J].Appl.Geochem.,2004,19:1495-1503.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心