煤层火成岩侵入的反射波特征研究与应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
煤田火成岩侵入严重影响矿井的安全高效生产,为此,本文依据岩样测试数据建立煤层火成岩侵入模型,利用高阶有限差分法进行数值模拟,并计算反射波最大振幅和峰值频率参数值.通过对反射波最大振幅和峰值频率的三个主要影响因素:子波峰值频率、火成岩侵入厚度和顶底板岩性参数分析,表明:随着子波峰值频率的增大,反射波的最大振幅和峰值频率均不同程度增大;煤层中火成岩侵入厚度增大,反射波的最大振幅表现为先减小后增大,峰值频率变化为先增大后减小;反射波峰值频率受煤层顶底板岩性参数影响较小,而最大振幅主要受顶板岩性参数影响.此外,分析还发现火成岩薄互层侵入时的反射波最大振幅值较低,峰值频率值较高,并且火成岩不规则侵入会引起反射波不规则、错乱甚至缺失.最后,地震资料和钻孔资料的分析表明正演模拟结果与实际吻合较好.
Though forward modeling the coal seam igneous intrusion which based on measurement data of rock samples by adopting high-order finite difference method,as well as calculating maximum amplitude and peak frequency, we obtained and analyzed the characteristics of reflected waves,for the safety and efficiency mining is seriously influenced by coal seam igneous intrusion.With three main factors of maximum amplitude and peak frequency,which are the peak frequency of wavelet,intrusion thickness of igneous rock and lithologic parameters of roof and floor,being analyzed,the results indicated that maximum amplitude and peak frequency would increase with the peak frequency of wavelet.The maximum amplitude would first decrease and then increase with intrusion thickness of igneous rocks,while the peak frequence changes in contrast.The peak frequency is less affected by lithologic parameters of roof and floor,while maximum amplitude is mainly influenced by lithologic parameters of roof.Moreover,this research also exhibited that the decreasing of maximum amplitude and increasing of dominant frequency may caused by thin interbed intrusion of igneous rocks,as well as irregular intrusion could result in the irregularity,confusion and even missing of reflected waves.Finally,the analysis of seismic recordings and drilling information indicated that forward modeling results were in good agreement with the actual.
引文
Cui D W,Yu J C.2014.Study on the coal erosion regularity using seismic liyhology information[J].Progress in Geophysics(in Chinese),29(1):355-361,doi:10.6038/pg20140150.
    Cheng L,Wang Y,Zhang Y G,et al.2013.The present situation and prospect of the acoustic properties research in coal[J].Progress in Geophysics(in Chinese),28(1):452-461,doi:10.6038/pg20130151.
    Chung H M,Lawton D C.1995.Amplitude responses of thin beds:Sinusoidal approximation versus Ricker approximation[J].Geophysics,60(1):223-230.
    Chung H M,Lawton D C.1995.Frequency characteristics of seismic reflection from thin beds[J].Canadian Journal of Exploration Geophysics,31(1):32-37.
    Dong S H,Ma Y L,Zhou M.2004.Forward modeling of relationship between coal seam thickness and seismic attributes of amplitude and frequency[J].Journal of China University of Mining&Technology(in Chinese),33(1):29-32.
    Golab.2003.The impact of igneous intrusions on coal,cleat carbonate,and groundwater composition[Ph.D.thesis].Wollongong:University of Wollongong.
    Huang W F,Yao F C,Li H B.2012.Regularities of tuning effects of thin interbedded layers and their net thickness determination[J].Oil Geophysical Prospecting(in Chinese),47(4):584-591.
    Jiang J Y,Cheng Y P,Wang L,et al.2012.The controlling effect of extremely thick igneous intrusions on coal and gas outburst[J].Journal of China University of Mining&Technology(in Chinese),41(1):42-47.
    Jin F L,Ji M J,Zhang P C.1998.Characteristics of Magmatic Intrusion and Prediction for Coalbed Thickness in Yonggu Mine,Huaibei Coalfield[J].Journal of China University of Mining&Technology(in Chinese),27(2):209-212.
    Li D H,Dong S H,Zhao X C,et al.2011.Seismic wave simulation of biphase EDA medium in coal-bed media[J].Progress in Geophysics(in Chinese),26(2):654-663,doi:10.3969/j.issn.1004-2903.2011.02.034.
    Li J J,Cui R F,Pan D M,et al.2012.Coalfield seismic inversion using probabilistic neural network[J].Progress in Geophysics(in Chinese),27(2):715-721,doi:10.6038/j.issn.1004-2903.2012.02.038.
    Li R H,Cui R F,Mao X R,et al.2008.Determination of magnetic rock intrusion using lithology interpretation method[J].Progress in Geophysics(in Chinese),23(1):242-248.
    Li X Y,Chen S M,Wang J M,et a1.2012.Forward modeling studies on the time-frequency characteristics of thin layers[J].Chinese J.Geophys.(in Chinese),55(10):3410-3419,doi:10 .6038/j.issn.0001-5733.2012.10.024.
    Lin J D,Yang Z,Yan Z H,et al.2012.Seismic response and identification of coal mine collapse columns[J].Progress in Geophysics(in Chinese),27(6):2631-2638,doi:10.6038/j.issn.1004-2903.2012.06.042.
    Pan D M,Yang D H,Zhang H.1997.Numerical simulation of seismic wave-field under the geological background of coal seam[J].Progress in Geophysics(in Chinese),12(1):74-83.
    Peng L Y,Cui R F,Ren C.2013.Application of multi-parameter lithological seismic inversion in identifying sandstone of coalbed roof in Xinjing coal mine as an example[J].Progress in Geophysics(in Chinese),28(4):2033-2039,doi:106038/pg20130447.
    Stewark A K,Massey M,Padgett P L,et al.2005.Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield(No.5)coal,Harrisburg,Illinois[J].International Journal of Coal Geology,63(1-2):58-67.
    Sun L P,Zheng X D,Shou H,et al.2010.The study of relation between thin-layer thickness and peak frequency[J].Oil Geophysical Prospecting(in Chinese),45(2):254-259.
    Widess M B.1973.How thin is a thin bed?[J].Geophysics,38(6):1176-1180.
    Xu Y Z,Cui R F,Pan D M,et al.2006.Application of seismic inversion based on model for igneous distributing in coalfields[J].Journal of China University of Mining&Technology(in Chinese),35(2):265-268.
    Xu Y Z,Cui R F,Huang W C,et al.2009.Reflectivity forward modeling and a CSSI method seismic inversion study of igneous intrusive area,coked area,and gas-enriched area located within a coal seam[J].Mining Science and Technology,19(4):457-462.
    Yin Q F,Pan D M,Yu J C,et al.2012.Research on seismic identification technique of coal mine collapse column[J].Progress in Geophysics(in Chinese),27(5):2168-2174,doi:10 .6038/j.issn.1004-2903.2012.05.043.
    Yuan Z L,Yang B,Wang J G.1996.Study and application of the forward modeling of thin-layer and thin-interlay in the domains of time and frequence[J].Geophysical Prospecting for Petroleum(in Chinese),35(3):14-20.
    Zhao Q,Hao S L.2006.Anisotropy test instance of ultrasonic velocity and attenuation of coal sample[J].Progress in Geophysics(in Chinese),21(2):531-534.
    Zhu S J,Chen Q F,He W X.2003.Determination of magnetic rock intrusion range using acoustic impedance inversion[J].Coal Geology and Exploration(in Chinese),31(1):49-50.
    崔大尉,于景邨.2014.利用地震岩性信息研究煤层冲刷规律[J].地球物理学进展,29(1):355-361,doi:10.6038/pg20140150.
    成林,王赟,张玉贵,等.2013.煤岩声波特征研究现状及展望[J].地球物理学进展,28(1):452-461,doi:10.6038/pg20130151.
    董守华,马彦良,周明.2004.煤层厚度与振幅、频率地震属性的正演模拟[J].中国矿业大学学报,33(1):29-32.
    黄文锋,姚逢昌,李宏兵.2012.薄互层调谐规律研究与净厚度估算[J].石油地球物理勘探,47(4):584-591.
    蒋静宇,程远平,王亮,等.2012.巨厚火成岩对下伏煤层煤与瓦斯突出事故控制作用[J].中国矿业大学学报,41(1):42-47.
    金法礼,冀明君,张培础.1998.淮北煤田永固井田岩浆岩侵入特征及煤厚预测[J].中国矿业大学学报,27(2):209-212.
    李东会,董守华,赵小翠,等.2011.煤储层双相EDA介质的地震波场模拟[J].地球物理学进展,26(2):654-663,doi:10.3969/j.issn.1004-2903.2011.02.034.
    李娟娟,崔若飞,潘冬明,等.2012.概率神经网络技术在煤田地震反演中的应用研究[J].地球物理学进展,27(2):715-721,doi:10.6038/j.issn.1004-2903.2012.02.038.
    李仁海,崔若飞,毛欣荣,等.2008.利用岩性解释方法圈定岩浆岩侵入煤层范围[J].地球物理学进展,23(1):242-248.
    李雪英,陈树民,王建民,等.2012.薄层时频特征的正演模拟[J].地球物理学报,55(10):3410-3419,doi:10.6038/j.issn.0001-5733.2012.10.024.
    林建东,杨振,颜中辉,等.2012.煤矿陷落柱的地震响应特征与识别[J].地球物理学进展,27(6):2631-2638,doi:10.6038/j.issn.1004-2903.2012.06.042.
    潘冬明,杨顶辉,张慧.1997.含煤层地质环境下地震波场的数值模拟[J].地球物理学进展,12(1):74-83.
    彭刘亚,崔若飞,任川.2013.多参数岩性地震反演在识别煤层顶板砂岩中的应用——以新景煤矿为例[J].地球物理学进展,28(4):2033-2039,doi:10.6038/pg20130447.
    孙鲁平,郑晓东,首皓,等.2010.薄层地震峰值频率与厚度关系研究[J].石油地球物理勘探,45(2):254-259.
    许永忠,崔若飞,潘冬明,等.2006.煤田采区火成岩分布地震反演技术的应用研究[J].中国矿业大学学报,35(2):265-268.
    尹奇峰,潘冬明,于景邨,等.2012.煤矿陷落柱地震识别技术研究[J].地球物理学进展,27(5):2168-2174,doi:10.6038/j.issn.1004-2903.2012.05.043.
    袁子龙,杨冰,王建国.1996.薄层、薄互层地震反射时间域与频率域正演模拟研究及应用[J].石油物探,35(3):14-20.
    赵群,郝守玲.2006.煤样的超声速度和衰减各向异性测试实例[J].地球物理学进展,21(2):531-534.
    朱书阶,陈青峰,何文欣.2003.利用波阻抗反演技术确定岩浆岩侵入煤层范围[J].煤田地质与勘探,31(1):49-50.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心