西非Rio Muni盆地深水水道特征与成因
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
深水水道沉积构型及其演化一直是沉积学界研究的热点。基于Rio Muni盆地深水区470 km2高分辨率三维地震数据,在精细地震解释的基础上,对研究区发育的深水水道的沉积构型、演化进行探讨。主要取得4点认识:(1)深水水道的弯曲度主要受控于物源供给和海底坡度,研究区发育弯曲水道、顺直水道2类深水水道;(2)起源于陆架边缘的深水水道,物源供给相对充分,弯曲度高,其剖面往往不对称,水道壁发育滑塌或阶地,垂向演化具有侧向迁移特征,发育废弃水道;(3)而起源于中上陆坡的深水水道,其弯曲度低,剖面具有U形特征,水道壁光滑无滑塌或阶地,主要以垂向加积为主。由于物源供给不足,顺直水道逐渐被深海泥质披覆沉积充填;(4)同一条深水水道,由上陆坡向下陆坡,随着海底坡度的降低,其弯曲度呈增大趋势。
Study on the sedimentary architecture and evolution of deep-water channel is one of the most interesting fields in sedimentology. Based on high-resolution three-dimensional seismic data sets which cover 470 km2,the sedimentary architecture and evolution of submarine channels are discussed in deep-water Rio Muni basin.Four conclusions can be drawn in this paper:(1) The sinuosity of submarine channels are main dominated by the sediment supply and the seafloor gradient. Two main types of submarine channels: straight channels and sinuous channels have been recognized in the study area.(2) The high sinuosity submarine channel indents the shelf margin and is linked to areas of high coarse-grained sediment supply. Their mophologies often show asymmetrical cross-sections,terraces,slumped edges,lateral migration and abandoned channel.(3) The submarine channels heading on middle or upper continental slopes have a low sinuosity. Straight channels' morphologies commonly include a U-shaped cross-section,smooth walls lacking slumps or terraces,aggradational evolution.The straight channels with low sediment supply were draped by hemipelagic deposition.(4) The sinuosity of a submarine increases as the shelf gradient decreases.
引文
[1]林畅松,杨起,李思田,等.贺兰奥拉槽早古生代深水重力流体系的沉积特征和充填样式[J].现代地质,1991,5(3):252-262.
    [2]吴时国,秦蕴珊.南海北部陆坡深水沉积体系研究[J].沉积学报,2009,27(5):922-930.
    [3]Jobe Z R,Lowe D R,Uchytil S J.Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea[J].Marine and Petroleum Geology,2011,28:843-860.
    [4]Kostic S.Modeling of submarine cyclic steps:Controls on their formation,migration,and architecture[J].Geosphere,2011,7(2):294-304.
    [5]王振奇,肖洁,龙长俊,等.下刚果盆地A区块中新统深水水道沉积特征[J].海洋地质前沿,2013,29(3):5-12.
    [6]林煜,吴胜和,王星,等.深水浊积水道体系构型模式研究——以西非尼日尔三角洲盆地某深水研究区为例[J].地质论评,2013,59(3):510-519.
    [7]Gong C L,Wang Y M,Zhu W L,et al.Upper Miocene to Quaternary undirectionally migrating deep-water channels in the Pearl River Mouth Basin,northern South China Sea[J].AAPG Bulletin,2013,97(2):285-308.
    [8]Alpak F O,Barton M D,Naruk S J.The impact of fine-scale turbidite channel architecture on deep-water reservoir performance[J].AAPG Bulletin,2013,97(2):251-284.
    [9]Dailly P,Lowry P,Goh K,et al.Exploration and development of Ceiba Field,Rio Muni basin,Southern Equatorial Guinea[J].The Leading Edge,2002,21(11):1140-1146.
    [10]李磊,邵子玮,都鹏燕,等.穆尼盆地第四纪深水弯曲水道:沉积构型、成因及沉积过程[J].现代地质,2012,26(2):149-154.
    [11]李磊,李志军,闫瑞,等.Rio Muni盆地第四纪陆坡地震地貌学[J].沉积学报,2014,32(3):485-493.
    [12]刘新颖,于水,胡孝林,等.深水水道坡度与曲率的定量关系及控制作用——以西非Rio Muni盆地为例[J].地球科学——中国地质大学学报,2012,37(1):106-112.
    [13]李磊,裴都,都鹏燕,等.海底麻坑的构型、特征、演化及成因——以西非木尼河盆地陆坡为例[J].海相油气地质,2013,18(4):53-58.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心