两次近距离大震前成都台视电阻率重现性、相似性和各向异性变化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文评价了四川汶川MS8.0、芦山MS7.0地震前后成都台地电观测环境,研究了该台视电阻率变化.结果为:(1)两次大震发生在该台以西的龙门山断裂带、震源机制和震源深度接近,是近距离大震,相应地,在两次地震前该台两个正交测道中的每一测道视电阻率变化均显示了中期异常及其变化过程的重现性和异常幅度的相似性;(2)在每次地震前,两个测道表现了异常变化形态、幅度和起始时间的差异性.其重现性、相似性证明这些异常与两次大震晚期孕育有关;差异性主要展示了与震源机制有直接联系的视电阻率各向异性变化,揭示了震前该台地下介质经历了强烈的电性各向异性变化的过程.
The precursor observations,such as electromagnetism,underground fluid,geodesy,etc.,for earthquake monitoring and prediction have been internationally implemented for decades.However,nowadays it is highly debatable whether the earthquake-related precursory anomalies can be observed or not,owing to the lack of both the reproducibility and similarity of these anomalies.The anomalies of direct current apparent resistivity(AR,for short;denoted asρs)recorded by station Chengdu before the MS8.0 Wenchuan quake on May 12,2008,and the MS7.0Lushan quake on Apr.20,2013 provide examples to address this issue.The reasons for this are as follows.First,this station is only 35 km from the epicenter in Wenchuan and 99 kmfrom that in Lushan.Second,both the two events happened along the NE-strike Longmen Shan fault zone west of the station.Third,the two focal mechanisms and depths are almost the same.Whether did the reproducibility and similarity of the AR anomalies appeared before the two great shocks?The primary curve of AR observation data and the annual-variation-free curve from which the annual variation of AR is eliminated by using the moving Fourier method(MFM,for short)are traditionally adopted to analyze the anomalies in China.As for the traditional approaches,it is reliable for identifying the relative AR change with the amplitude of no less than 1% because the measurement accuracy is much better than 0.3%in the observation of AR.But,it is sometimes difficult to distinguish the normal and anomalous changes using the traditional approaches,which will result in the uncertainty of anomalies.To solve this problem,the normalized variation rate method(NVRM)is put forward and its principle is briefly described as follows.The long-term decreasing or decreasing variation in the AR time series {ρs}(with the length N),if any,is eliminated by the linear regression and the annual variation in it is also removed by using the MFM.Theξcontinuous data in{ρs}are selected to form the ith time sub-series and the variation rate is calculated fromρ·′si= Ki ×Ri(where Kiis its slope coefficient and Riis linear correlation coefficient).Like this,the initial variation rate time series{ρ·′s}(i=ξ,ξ+1,…,N)is generated with the step lengthξfixed.Finally,the NVRM time series{ρ·s}(dimensionless)with its mean value m →0and RMSEσn-1 → 1is obtained from {ρ·′s}after the processing such as the normalization,centralization,and noise reduction.The index of anomalies is consistently defined as±2.4on {ρ·s}for each station or channel.In this paper the traditional approaches and the NVRM are applied to process the AR data observed by station Chengdu.At station Chengdu,two measurement channels are respectively in N58°E and N49°W orientations at the same location and each channel employs the fixed Schlumberger array.Before the MS8.0 Wenchuan and MS7.0 Lushan events,the two orthogonal channels recorded preseismic anomalies with the repeatability,similarity and difference.(1)The two anomalies recorded by each channel showed the repeatability and similarity.The AR anomalies of channel NE,with the relative amplitude of ~-7.0% on the daily mean curve,before the Wenchuan event persistently decreased for 19 months,and then started a recovery(increasing)change about3.5months before the shock.Another decrease anomaly,-5.9%,before the MS7.0Lushan event continued for 8months and started a recovery change immediately following the maximum drop. The earlier decreasing and then increasing changes had distinctly exhibited the reproducibility in their changing forms and processes,which tallied with the change process of the electrical resistivity within the focal area predicted by the dilatancy-diffusion model.Furthermore,they also exhibited the similarity in the large-amplitude decrease in the mediumterm before the two events.The two anomalies recorded by channel NW in the medium-term clearly showed their reproducibility of the two positive anomalies on the NVRM curves.Their change forms were identical,their starting times were nearly the same,and only the amplitude was larger before the near-distance and greater event in Wenchuan than that before the slightly farther and smaller shock in Lushan.(2)Before each quake the two anomalies recorded by the two channels showed differences in their change forms,amplitudes and starting times.The channel NE recorded the two prominent decreasing anomalies in the medium-term while channel NW recorded two NVRM positive anomalies that indicated the increasing changes of AR,which manifested as the anisotropic changes in the reverse directions.The two anomalies on themonthly and daily mean curves of channel NE were larger in amplitude while those of channel NW appeared only on the NVRM curves that indicated the small-amplitude changes of AR,which showed the apparent anisotropic changes in amplitude.The two medium-term anomalies of channel NE started earlier while those on channel NW started later.Furthermore,the channel NE is obviously superior to channel NW in the responsiveness to the two quakes.(3)The possible reasons for the anomalies of AR is theoretically explained based on the anisotropic medium as follows.During the later preparation of the two great earthquakes,there occurred such the processes as the nonlinear growth and development of the micro cracks within the medium below the station,with the micro-crack strikes in the dominant arrangement roughly along the NW—SE direction and the penetration of low-resistance water within the medium.As a result,the processes brought about the anisotropic changes in electrical resistivity within the medium,with the change in the direction being larger in amplitude than that perpendicular to direction.It resulted in the apparent anisotropic changes,with the AR change of channel NE being larger than that of channel NW.Furthermore,the anisotropic changes in the electrical resistivity were rather strong due to the near distance and large magnitude,so the reverse changes of AR appeared;and before the Wenchuan quake the underground medium below this station had undergone the process mostly characterized by the NW—SE direction compression since August 2006 at latest,and before the Lushan quake the compression had been formed since August 2012.The MS8.0 Wenchuan and MS7.0Lushan earthquakes all occurred on the Longmen Shan fault,very near to station Chengdu.Their focal characters and depths are almost the same,and the two measuring channels in the station record the AR anomalies with the following features:(1)Before the two events,the two anomalies recorded by each channel clearly exhibited the repeatability in the medium-term feature and changing form,and the similarity in the amplitude.Especially,the two anomalies recorded by channel NE show the repeatability in the "earlier decreasing and then recovery(increasing)change"process.(2)Before each quake,the two anomalies recorded by the two channels show the differences in the change form,amplitude and starting time.The repeatability and similarity prove the anomalies to be directly associated with the two great earthquakes,and the differences show that the anisotropic AR changes are directly related to the two source characters.
引文
China Earthquake Administration.2001.Technical Specification forDigital Observation of Seismology and Precursor-ElectromagneticObservation(Trial Implementation)(in Chinese).Beijing:Seismological Press,5-6,19-46.
    Du X B,Zhao H Y,Chen B Z.1993.On the relation of theimminent sudden change in earth resistivity to the active faultand earthquake generating stress field.Acta SeismologicaSinica,6(3):663-673.
    Du X B,Ren G J,Xue S Z.1999.Study on many kinds ofprecursory anomalies and trial prediction of strong earthquakesin the continent of China.Northwestern Seismological Journal(in Chinese),21(2):113-122,doi:10.3969/j.issn.1000-0844.1999.02.001.
    Du X B,Tan D C.2000a.On the temporal and spatial clusters ofone-year scale anomalies of earth-resistivity and the relation toseismicity.Earthquake Research in China(in Chinese),16(3):283-292,doi:10.3969/j.issn.1001-4683.2000.03.010.
    Du X B,Xue S Z,Hao Z,et al.2000b.On the relation of moderateshort term anomaly of earth resistivity to earthquake.ActaSeismologica Sinica,13(4):393-403,doi:10.1007/s11589-000-0021-z.
    Du X B,Ruan A G,Fan S H,et al.2001.Anisotropy of thevariation rate of apparent resistivity near the epicentral regionfor strong earthquakes.Acta Seismologica Sinica,14(3):303-314,doi:10.1007/BF03040631.
    Du X B,Zhao J L,Tan D C,et al.2006a.DB/T 18.1-2006Specification for the Construction of Seismic Station-GeoelectricalStation,Part 1:Geoelectrical Resistivity Observatory(in Chinese).Beijing:Seismological Press.
    Du X B,Ma Z H,Ye Q,et al.2006b.Anisotropic changes in earthresistivity associated with strong earthquakes.Progress inGeophysics(in Chinese),21(1):93-100,doi:10.3969/j.issn.1004-2903.2006.01.015.
    Du X B,Li N,Ye Q,et al.2007.A possible reason for theanisotropic changes in apparent resistivity near the focal regionof strong earthquake.Chinese J.Geophys.(in Chinese),50(6):1802-1810,doi:10.3321/j.issn:0001-5733.2007.06.021.
    Du X B,Ye Q,Ma Z H,et al.2008.The detection depth ofsymmetric four-electrode resistivity observation in/near theepicentral region of strong earthquakes.Chinese J.Geophys.(in Chinese),51(6):1943-1949,doi:10.3321/j.issn:0001-5733.2008.06.038.
    Du X B.2011.Two types of changes in apparent resistivity inearthquake prediction.Sci.China Earth Sci.,54(1):145-156,doi:10.1007/s11430-010-4031-y.
    Du X B,An Z H,Zhong L B,et al.2013.Changes in apparentresistivity of station Chengdu at near distance before the MS8.0Wenchuan and MS7.0 Lushan earthquakes.//11th ChinaInternet Geo-Electromagnetic Workshop.Collection,ExpandedAbstract,14-16.
    Du X B,Ye L Q,Fan Y Y,et al.2013.Geo-electrical forecastingand observation prior to and following the Minxian-ZhangxianMS6.6 earthquake of 2013.China Earthquake EngineeringJournal(in Chinese),35(3):513-521,doi:10.3969/j.issn.1000-0844.2013.03.0513.
    Gui X T,Guan H P,Dai J A.1989.The short-term and immediateanomalous pattern recurrences of the apparent resistivity beforethe Tangshan and Songpan earthquake of 1976.NorthwesternSeismological Journal(in Chinese),11(4):71-75.
    Hao Z,Du X B,Wang J B.2000.Geoelectricity software forearthquake prediction.Northwestern Seismological Journal(inChinese),2000,22(2):154-159,doi:10.3969/j.issn.1000-0844.02.009.
    Huang Q H,Lin Y F.2010.Numerical simulation of selectivity ofseismic electric signal and its possible influences.Chinese J.Geophys.(in Chinese),53(3):535-543,doi:10.3969/j.issn.0001-5733.2010.03.007.
    Huang Q H.2011.Retrospective investigation of geophysical datapossibly associated with the MS8.0 Wenchuan earthquake inSichuan,China.Journal of Asian Earth Sciences,41(4-5):421-427,doi:10.1016/j.jseaes.2010.05.014.
    КраевАП.1954.Geoelectrics Principle(in Chinese).Zhang K Q,Chen P G,Zhang Z C,et al.Trans.Beijing:GeologicalPublishing House,24-62,333-340.
    Li Y X,Zhang J H,Zhou W,et al.2009.The mechanism anddynamics of the generation and occurrence for Wenchuan MS8.0earthquake.Chinese J.Geophys.(in Chinese),52(2):519-530,doi:10.1002/cjg2.1338.
    Mei S R,Fen D Y,Zhang G M,et al.1993.Introduction ofEarthquake Research in China(in Chinese).Beijing:SeismologicalPress,302-307.
    Mjachkin V I,Brace W F,Sobolev G A,et al.1975.Two modelsfor earthquake forerunners.Pure and Applied Geophysics,113(1):169-181.
    Nur A.1972.Dilatancy,pore fluids,and premonitory variations ofts/tptravel times.Bull.Seismol.Soc.Amer.,62(5):1217-1222.
    Qian F Y,Zhao Y L,Yu M M,et al.1982.Geo-resistivity anomalybefore earthquake.Sci.China Ser.B,(9):831-839.
    Qian J D,Zhao J L,Du X B,et al.2008.DB/T 29.1-2008TechnicalRequirements of Instrument in Network for Earthquake MonitoringGeoelectrical Meters-Part 1:Direct Current Meter for Geoelectricalresistivity(in Chinese).Beijing:Seismological Press.
    Qian J D,Du X B,Cai J A,et al.2009.DB/T 33.1-2009 Themethod of earthquake-related geoelectrical monitoringGeoelectrical resistivity observation-Part 1:The single separationobservation(in Chinese).Beijing:Seismological Press.
    Qian J D,Ma Q Z,Li S N.2013.Further study on the anomalies inapparent resistivity in NE configuration at Chengdu stationassociated with Wenchuan MS8.0earthquake.Acta SeismologicaSinica(in Chinese),35(1):4-17,doi:10.3969/j.issn.0253-3782.2013.01.002.
    Scholz C H,Sykes L R,Aggrawal Y P.1973.Earthquakeprediction:aphysical basis.Science,181(4102):803-810.
    Wang X H,Qi G Z,Zhao Y L.1984.The extension before faultinstability and geo-resistivity precursors.Sci.China Ser.B,(11):1026-1038.
    Ye Q,Du X B,Chen J Y,et al.2005.One-year prediction for theDayao and Minle-Shandan earthquakes in 2003.Journal ofSeismological Research(in Chinese),28(3):226-230,doi:10.3969/j.issn.1000-0666.2005.03.004.
    Zeng X F,Luo Y,Han L B,et al.2013.The Lushan MS7.0earthquake on 20 April 2013:A high-angle thrust event.Chinese J.Geophys.(in Chinese),56(4):1418-1424,doi:10.6038/cjg20130437.
    Zhang X M,Zhai Y Z.2002.Study on the earth resistivityanomalies before the earthquakes occurred in the joint area ofShanxi,Hebei and Inner Mongolia.North China EarthquakeScience(in Chinese),20(1):16-24.
    Zhang X M,Li M,Guan H P.2009.Anomaly analysis of earthresistivity observations before the Wenchuan earthquake.Earthquake(in Chinese),29(1):108-115,doi:10.3969/j.issn.1000-3274.2009.01.014.
    Zheng G L,Du X B,Chen J Y,et al.2011.The influence on theearthquake-related anomalies of apparent resistivity from theactive faults.Acta Seismologica Sinica(in Chinese),33(2):187-197,doi:10.3969/j.issn.0253-3782.2011.02.006.
    Zhu T.2013.Preliminary study on regional geo-resistivity anomalybefore the Wenchuan MS8.0 earthquake.Acta SeismologicaSinica(in Chinese),35(1):18-25,doi:10.3969/j.issn.0253-3782.2013.01.003.
    杜学彬,任广军,薛顺章.1999.中国大陆多种前兆异常研究及强震的尝试性预测.西北地震学报,21(2):113-122,doi:10.3969/j.issn.1000-0844.1999.02.001.
    杜学彬,谭大诚.2000.地电阻率1年尺度异常时空丛集现象与地震活动性.中国地震,16(3):283-292,doi:10.3969/j.issn.1001-4683.2000.03.010.
    杜学彬,赵家骝,谭大诚等.2006a.DB/T 18.1-2006地震台站建设规范地电台站第1部分:地电阻率台站.北京:地震出版社.
    杜学彬,马占虎,叶青等.2006b.与强地震有关的视电阻率各向异性变化.地球物理学进展,21(1):93-100,doi:10.3969/j.issn.1004-2903.2006.01.015.
    杜学彬,李宁,叶青等.2007.强地震附近视电阻率各向异性变化的原因.地球物理学报,50(6):1802-1810,doi:10.3321/j.issn:0001-5733.2007.06.021.
    杜学彬,叶青,马占虎等.2008.强地震附近电阻率对称四极观测的探测深度.地球物理学报,51(6):1943-1949,doi:10.3321/j.issn:0001-5733.2008.06.038.
    杜学彬,严玲琴,范莹莹等.2013.2013年岷县漳县MS6.6地震前/后地电观测引起的思考.地震工程学报,35(3):513-521,doi:10.3969/j.issn.1000-0844.2013.03.0513.
    桂夑泰,关华平,戴经安.1989.唐山、松潘地震前视电阻率短临异常图象重现性.西北地震学报,11(4):71-75.
    郝臻,杜学彬,王静波.2000.地电学地震预报方法软件系统(GSEP).西北地震学报,22(2):154-159,doi:10.3969/j.issn.1000-0844.2000.02.009.
    黄清华,林玉峰.2010.地震电信号选择性数值模拟及可能影响因素.地球物理学报,53(3):535-543,doi:10.3969/j.issn.0001-5733.2010.03.007.
    克拉耶夫.1954.地电原理.张可迁,陈培光,张志诚等译.北京:地质出版社,24-62,333-340.
    李延兴,张静华,周伟等.2009.汶川MS8.0地震孕育发生的机制与动力学问题.地球物理学报,52(2):519-530,doi:10.1002/cjg2.1338.
    梅世蓉,冯德益,张国民等.1993.中国地震预报概论.北京:地震出版社,302-307
    钱复业,赵玉林,于谋明等.1982.地震前地电阻率的异常变化.中国科学-B辑,(9):831-839.
    钱家栋,赵家骝,杜学彬等.2008.DB/T 29.1-2008地震观测仪器进网技术要求地电观测仪第1部分:直流地电阻率仪.北京:地震出版社.
    钱家栋,杜学彬,蔡晋安等.2009.DB/T 33.1-2009地震地电观测方法地电阻率第1部分:单极距观测.北京:地震出版社.
    钱家栋,马钦忠,李劭秾.2013.汶川MS8.0地震前成都台NE测线地电阻率异常的进一步研究.地震学报,35(1):4-17,doi:10.3969/j.issn.0253-3782.2013.01.002.
    王新华,祁贵仲,赵玉林.1984.断层失稳前的扩展及电阻率前兆.中国科学-B辑,(11):1026-1038.
    叶青,杜学彬,陈军营等.2005.2003年大姚和民乐—山丹地震1年尺度预测.地震研究,28(3):226-230,doi:10.3969/j.issn.1000-0666.2005.03.004.
    曾祥方,罗燕,韩立波等.2013.2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震.地球物理学报,56(4):1418-1424,doi:10.6038/cjg20130437.
    张学民,翟彦忠.2002.晋冀蒙交界地区震前地电阻率异常分析与研究.华北地震科学,20(1):16-24.
    张学民,李美,关华平.2009.汶川8.0级地震前的地电阻率异常分析.地震,29(1):108-115,doi:10.3969/j.issn.1000-3274.2009.01.014.
    郑国磊,杜学彬,陈军营等.2011.断层构造对地震地电阻率异常的影响.地震学报,33(2):187-197,doi:10.3969/j.issn.0253-3782.2011.02.006.
    中国地震局.2001.地震及前兆数字观测技术规范-电磁观测(试行).北京:地震出版社,5-6,19-46.
    朱涛.2013.汶川MS8.0地震前区域性地电阻率异常初步研究.地震学报,35(1):18-25,doi:10.3969/j.issn.0253-3782.2013.01.003.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心