上月壳中的散射引起月震尾波的数值模拟研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在阿波罗月震记录中普遍存在着强烈持久的尾波信号,这样的波形特征无法用均匀分层月球模型解释.一个普遍被接受的解释是月震尾波由月球浅层结构对月震波的散射引起.我们采用基于交错网格的伪谱和有限差分混合方法模拟研究非均匀上月壳对月震波的散射效应,在此基础上解释月震尾波的形成机制,并估计出上月壳速度扰动的强度.我们发现,在均匀分层模型基础上,进一步考虑上月壳中的非均匀结构对月震波的散射效应,能有效地解释月震信号中强烈持久的尾波.我们认为月震尾波可能是由上月壳中的低波速、低衰减和散射这三个因素的共同作用所引起.采用不同的扰动标准差模拟上月壳的非均匀性,并比较模拟波形与真实月震图的相似程度,我们发现上月壳中速度扰动的标准差应该在3%到5%之间,很可能接近于3%.
The Apollo lunar seismic data generally exhibits a long and strong coda,which masks seismic phases other than initial P and S waves and causes difficulties in analyses of secondary waves.Recent numerical simulation of 2D global seismic wave propagation in a whole-Moon model showed that lunar seismic coda couldn't be produced by a layered Moon model.A widely accepted explanation is that lunar seismic coda is resulted from scattering in a near-surface layer,which could be several to more than twenty kilometers thick.This study presents numerical simulations of scattering effects caused by small-scale heterogeneity in upper Moon crust in order to explain the coda.Wave equations in velocity-stress form are solved in a 2Dcylindrical coordinate system.The spatial derivatives are calculated by a hybrid pseudospectral and finite difference method defined on staggered grid.The background layered model is based on recent published seismic velocity and attenuation models of the Moon.In order to simulate the heterogeneity of upper Moon crust,von-Karman auto correlation function is used to generate velocity fluctuations,superimposed onthe background velocity.We firstly check the effectiveness of scattering in upper Moon crust to reproduce lunar seismic coda.Wavefields are calculated for an upper Moon crust model without scattering and one with scattering.Calculations are performed for a 71 km shallow moonquake and an 867 km deep moonquake.Comparison of the wavefield snapshots generated by the two models shows that wave energy can last a very long time in the upper Moon crust due to scattering in this layer.Comparison of waveforms shows that scattering in upper Moon crust can effectively produce longduration coda.Comparison with Apollo seismograms shows that the duration and strength of coda caused by scattering in upper Moon crust can be well consistent with observations.The mechanism which produces lunar seismic coda is tentatively discussed. We propose that scattering,low attenuation and low velocity in the upper Moon crust may all contribute to the lunar seismic coda.Effects of fluctuant strength on synthetic coda are discussed.Different standard deviations of velocity fluctuations are set for upper Moon crust:1%,3%,5%,7%and 9%.For both shallow and deep moonquakes,wavefields are simulated for each model and the characteristic decay times of synthetic coda are calculated at four epicentral distances:22°,45°,67.5°and 90°.The characteristic decay times firstly increase with standard deviation of velocity fluctuations and then decrease.The characteristic decay times reach the largest value where standard deviation equals to 3%.Finally,similarities between synthetics and Apollo lunar seismograms are measured via correlation coefficient in order to estimate the most realistic strength of velocity fluctuations.We propose that the standard deviation of velocity fluctuations should be between 3% and 5%,and it′s likely close to 3%.
引文
Aki K,Richards P G.1980.Quantitative Seismology VolumeⅡ.San Francisco:W.H.Freeman.
    Blanchette-Guertin J F,Johnson C L,Lawrence J F.2012a.Investigation of scattering in lunar seismic coda.J.Geophys.Res.:Planets(1991—2012),117(E6),doi:10.1029/2011JE004042.
    Blanchette-Guertin J F,Johnson C L,Lawrence J F.2012b.Modeling seismic waveforms in a highly scattering Moon.∥43rd Lunar and Planetary Science Conference,Abstract 1473,Lunar and Planetary Institute,Houston.
    Blanchette-Guertin J F,Johnson C L,Lawrence J F.2013.Effect ofvariable scatterer length-scales and frequency dependent attenuation onthe decay of lunar seismic coda.∥44th Lunar and PlanetaryScience Conference,Abstract 1234.Houston:Lunar and PlanetaryInstitute.
    Bulow R C,Johnson D L,Shearer P M.2005.New eventsdiscovered in the Apollo lunar seismic data.J.Geophys.Res.,110,E10003,doi:10.1029/2005JE002414.
    Cerjan C,Kosloff D,Kosloff R,et al.1985.A nonreflectingboundary condition for discrete acoustic and elastic waveequations.Geophysics,50(4):705-708.
    Dainty A M,Toksz M N,Anderson K R,et al.1974.Seismicscattering and shallow structure of the moon in oceanusprocellarum.The Moon,91(1-2):11-29.
    Dziewonski A M,Anderson D L.1981.Preliminary reference Earthmodel.Physics of the Earth and Planetary Interiors,25(4):297-356.
    Frankel A,Clayton R W.1986.Finite difference simulations ofseismic scattering:Implications for the propagation of shortperiod seismic waves in the crust and models of crustalheterogeneity.J.Geophys.Res.:Solid Earth(1978—2012),91(B6):6465-6489.
    Furumura T,Kennett B L N,Furumura M.1998.Seismicwavefield calculation for laterally heterogeneous whole earthmodels using the pseudospectral method.Geophys.J.Int.,135(3):845-860.
    Furumura T,Kennett B L N.2005.Subduction zone guided wavesand the heterogeneity structure of the subducted plate:Intensityanomalies in northern Japan.J.Geophys.Res.,110,B10302,doi:10.1029/2004JB003486.
    Furumura T,Kennett B L N.2008.A scattering waveguide in theheterogeneous subducting plate.∥Sato H,Fehler M eds.Scattering of Short-Period Seismic Waves in Earth Heterogeneity,Advances in Geophysics.Vol.50,Chap.7.Elsevier,195-217.
    Garcia R F,Gagnepain-Beyneix J,Chevrot S,et al.2011.Verypreliminary reference Moon model.Physics of the Earth andPlanetary Interiors,188(1-2):96-113,doi:10.1016/j.pepi.2011.06.015.
    Goins N R,Dainty A M,Toksz M N.1981.Seismic energy releaseof the Moon.J.Geophys.Res.,86(B1):378-388.
    Graves R W.1996.Simulating seismic wave propagation in 3Delastic media using staggered-grid finite differences.Bulletin ofthe Seismological Society of America,86(4):1091-1106.
    Helmberger D V,Vidale J E.1988.Modeling strong motionsproduced by earthquakes with two-dimensional numerical codes.Bulletin of the Seismological Society of America,78(1):109-121.
    Herrmann R B.1979.SH-wave generation by dislocation sources—a numerical study.Bulletin of the Seismological Society ofAmerica,69(1):1-15.
    Jiang M M,Ai Y S.2010.Moonquakes and lunar interior.Geochimica(in Chinese),39(1):15-24.
    Kennett B L N,Furumura T.2013.High-frequency Po/So guidedwaves in the oceanic lithosphere:I—long-distance propagation.Geophys.J.Int.,195(3):1862-1877.
    Khan A,Maclennan J,Taylor S R,et al.2006.Are the Earth andthe Moon compositionally alike?Inferences on lunar compositionand implications for lunar origin and evolution from geophysicalmodeling.J.Geophys.Res.,111,E05005,doi:10.1029/2005JE002608.
    Koyama J,Nakamura Y.1980.Focal mechanism of deepmoonquakes.∥Bedini S A ed.Lunar and Planetary ScienceConference Proceedings,Vol.11.1855-1865.
    Latham G,Ewing M,Dorman J,et al.1972.Moonquakes andlunar tectonism.The Moon,4(3-4):373-382.
    Latham G V,Ewing M,Press F,et al.1970.Passive seismicexperiment.Science,167(3918):455-457.
    Lawrence J F,Johnson C L.2010.Synthetic seismograms withhigh-frequency scattering for the Moon.∥41st Lunar andPlanetary Science Conference,Abstract 2701.Houston:Lunarand Planetary Institute.
    Levander A R.1988.Fourth-order finite-difference P-SV seismograms.Geophysics,53(11):1425-1436.
    Li D Z,Helmberger D,Clayton R W,et al.2014.Global syntheticseismograms using a 2-D finite-difference method.Geophys.J.Int.,197(2):1166-1183.
    McGetchin T R,Settle M,Head J W.1973.Radial thicknessvariation in impact crater ejecta:Implications for lunar basindeposits.Earth Planet.Sci.Lett.,20(2):226-236.
    Nakamura Y.1977.Seismic energy transmission in an intensivelyscattering environment.J.Geophys.Res.,43(1-2):389-399.
    Nakamura Y.1978.A1 moonquakes-source distribution andmechanism.∥Lunar and Planetary Science Conference Proceedings,Vol.9.3589-3607.
    Nakamura Y.2005.Farside deep moonquakes and the deep interiorof the Moon.J.Geophys.Res.,110(E1):E0100,doi:10.1029/204JE002332.
    Nakamura Y,Latham G V,Dorman H J,et al.1979.Shallowmoonquakes-depth,distribution and implications as to thepresent state of the lunar interior.∥Lunar and PlanetaryScience Conference Proceedings,Vol.10.2299-2309.
    Ouyang Z Y.2005.Introduction to Lunar Science(in Chinese).Beijing:China Astronautic Publishing House.
    Sato H,Fehler M C.1998.Seismic Wave Propagation andScattering in the Heterogeneous Earth.New York:SpringerVerlag.
    Shearer P M,Earle P S.2004.The global short-period wavefieldmodelled with a Monte Carlo seismic phonon method.Geophys.J.Int.,158(3):1103-1117.
    Shearer P M.2007.Deep Earth structure—Seismic scattering in thedeep Earth.∥Seismology and the Structure of the Earth,Treatise Geophys.,Vol.1.Amsterdam:Elsevier,695-729.
    Thompson T W,Campbell B A,Ghent R R,et al.2009.Ruggedcrater ejecta as a guide to megaregolith thickness in the southernnearside of the Moon.Geology,37(7):655-658,doi:10.1130/G25565A.1.
    Tromp J.2007.Forward modeling and synthetic seismograms:3D
    numerical methods.∥Romanowicz B,Dziewonski A eds.Treatise on Geophysics.Amsterdam:Elsevier,191-217.
    Wang Y B,Takenaka H,Furumura T.2001.Modelling seismicwave propagation in a two dimensional cylindrical whole earthmodel using the pseudospectral method.Geophys.J.Int.,145(3):689-708.
    Wang Y B,Takenaka H,Jiang X H,et al.2013.Modelling twodimensional global seismic wave propagation in a laterallyheterogeneous whole-Moon model.Geophys.J.Int.,192(3):1271-1287,doi:10.1093/gji/ggs094.
    Weber R C,Lin P Y,Garnero E J,et al.2011.Seismic detection ofthe lunar core.Science,331(6015):309-312.
    Witte D C,Richards P G.1990.The pseudospectral method forsimulating wave propagation.Computational Acoustics,3:1-18.
    Zhan W,Li F.2007.The inner structure of the moon.Progress inGeophysics(in Chinese),22(3):737-742.
    姜明明,艾印双.2010.月震与月球内部构造.地球化学,39(1):15-24.
    欧阳自远.2005.月球科学概论.北京:中国宇航出版社.
    占伟,李斐.2007.月球内部构造研究综述.地球物理学进展,22(3):737-742.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心