基于定量地震学的矿山微震活动对开采速率的响应特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
矿山地震活动是矿山开采的岩体动力响应,反映矿山岩体应力、变形和破坏状态。利用冬瓜山铜矿微震监测数据,基于定量地震学原理,采用累积视体积ΣVA、能量指数EI和累积开挖量ΣVm时程曲线分析方法,研究矿山开采速率与微震变形之间的关系;并从能量的储存与释放的角度,结合视体积VA和弹性收敛体积VE,提出将累积地震视体积ΣVA与累积开采量ΣVm之比作为微震活动对开采速率的响应系数(CSR),以表征岩体中能量的储存与释放关系。研究结果表明,矿山开采量对ΣVA和EI时程曲线特性有明显的影响,矿山开采速率与微震应变率存在对应关系,CSR的变化反映了系统的稳定变化趋势,可以方便地应用于矿山活动的监测分析和作为矿山生产速率控制的指导参数。
Seismicity in mines is dynamic response of rock mass to mining and reflects the stress state,deformation and destruction of rock mass.Using the time history methods of the cumulative apparent volume ∑VA,energy index EI and cumulative volume of production ∑Vm,the relationship between seismic deformation and mining rate is studied in the framework of quantitative seismology with the seismic data monitored in Donguashan Copper Mine.According to the view of storage and release of energy,combining with seismic apparent volume VA and elastic convergence volume VE,the ratio of the cumulative apparent volume ∑VA to the cumulative volume of production ∑Vm is defined as coefficient of seismic response to mining(CSR) to present the relationship between energy storage and energy release in rock mass.The results show that,the volume of production influences obviously on time history curves of ∑VA and EI;there is a correlation between mining rate and seismic strain rate;the variation of CSR indicates the tendency of stability of rock mass system,which can be easily used in analysis of mine seismicity monitoring and as a good guide parameter to control mining rate.
引文
[1]MENDECKI A J.Seismic monitoring in mines[M].London:Chapmanand Hall,1997:179–184,220–245.
    [2]GIBOWICZ S J,KILKO A.An introduction to mining seismology[M].San Diego,California:Academic Press,Inc.,1994:2–8,15–22.
    [3]POTVIN Y,HUDYMA M R.Seismic monitoring in highlymechanized hardrock mines in Canada and Australia[C]//VANASWEGEN G,DURRHEIM R J,ORTLEPP W D ed.Proceedings ofthe Sixth International Symposium on Rockburst and Seismicity inMines.Johannesburg:The South Institute of Mining and Metallurgy,2001:267–280.
    [4]JOUGHIN W C,PETH S Z.Seismic activity as a result of mining thetabular and massive orebodies of South Deep Gold Mine[C]//POTVIN Y,HUDYMA M ed.Proceedings of the Sixth International Symposiumon Rockburst and Seismicity in Mines.Nedlands:Australian Centrefor Geomechanics,2005:425–434.
    [5]VALLEJOS J A,MCKINNON S D.Correlations between mining andseismicity for re-entry protocol development[J].International Journalof Rock Mechanics and Mining Sciences,2011,48(4):616–625.
    [6]赵兴东,李元辉,刘建坡,等.红透山矿深部开采岩爆潜在区微震活动性研究[J].东北大学学报:自然科学版,2009,30(9):1330–1333.(ZHAO Xingdong,LI Yuanhui,LIU Jianpo,et al.Study on microseismicactivity in potential rockburst zone during deep excavation in Hongtoushanmine[J].Journal of Northeastern University:Natural Science,2009,30(9):1 330–1 333.(in Chinese))
    [7]王存文,姜福兴,王平,等.煤柱诱发冲击地压的微震事件分布特征与力学机制[J].煤炭学报,2009,34(9):1169–1173.(WANGCunwen,JIANG Fuxing,WANG Ping,et al.Microseismic eventsdistribution characteristics and mechanisms of rock bursting inducedby a coal pillar[J].Journal of China Coal Society,2009,34(9):1 169–1 173.(in Chinese))
    [8]闫宪磊,陈学华,闫宪洋.综放工作面过断层期间微震规律分析[J].煤炭学报,2011,36(增1):83–87.(YAN Xianlei,CHEN Xuehua,YAN Xianyang.Analysis of microseismic law when fully-mechanizedcoalface passed through fault[J].Journal of China Coal Society,2011,36(Supp.1):83–87.(in Chinese))
    [9]唐礼忠,汪令辉,张君,等.大规模开采矿山地震视应力和变形与区域性危险地震预测[J].岩石力学与工程学报,2011,30(6):1 168–1 178.(TANG Lizhong,WANG linghui,ZHANG Jun,et al.Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1 168–1 178.(in Chinese))
    [10]唐礼忠,XIA K W,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1818–1824.(TANG Lizhong,XIA K W,LI Xibing.Seismic multi-fractalcharacteristics in mines and seismicity prediction[J].Chinese Journalof Rock Mechanics and Engineering,2010,29(9):1 818–1 824.(inChinese))
    [11]袁子清,杨小聪,唐礼忠.硬岩金属矿山开采活动与矿山地震活动的关系研究[J].中国安全科学学报,2008,(4):16–19.(YUANZiqing,YANG Xiaocong,TANG Lizhong.Research on the relationshipbetween exploiting activity of hard-rock metal mines and mining-induced seismicity[J].China Safety Science Journal,2008,(4):16–19.(in Chinese))
    [12]唐礼忠,潘长良,杨承祥.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山,2006,(10):41–45.(TANG Lizhong,PANChangliang,YANG Chengxiang.Establishment and application ofmicroseismicity monitoring system in Dongguashan Copper Mine[J].Metal Mine,2006,(10):41–45.(in Chinese))
    [13]MENDECKI A J.Real time quantitative seismicity in mines[C]//YOUNG R P ed.Proceedings of Sixth International Symposium onRockburst and Seismicity in Mines.Rotterdam:A.A.Balkema,1993:287–296.
    [14]MENDECKI A J.Persistence of seismic rockmass response tomining[C]//VAN ASWEGEN G,DURRHEIM R J,ORTLEPP W Ded.Proceedings of the Sixth International Symposium on Rockburstand Seismicity in Mines.Johannesburg:The South Institute of Miningand Metallurgy,2001:267–280.
    [15]VAN DER HEEVER P K.O CONNOR T S.The mining of a stresseddeep-level shaft pillar[C]//Proceedings of the 15th CMMI Congress.Johannesburg:SAIMM,1994:167–173.
    [16]MCGARR A.Seismic moments and volume change[J].Journal ofGeophysical Research,1976,81(8):1 487–1 494.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心