块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于珠江口盆地和尼日尔三角洲盆地的高分辨率三维地震资料和钻测井资料,对块体搬运沉积体系的沉积构型进行研究。研究结果表明:识别出陆坡滑塌形成的滑块体(Ⅰ)、水道壁滑塌形成的滑块体(Ⅱ)以及滑块体与碎屑流沉积物复合体(Ⅲ)3类块体搬运沉积体系。同一类块体搬运沉积体系的外部形态、内部结构、物理性质以及叠置样式具有一定相似性;Ⅰ类具有朵状几何外形,滑块体后部发育铲状滑塌槽。滑块体顺滑脱面滑动,并发生一定程度的旋转,内部具有铲式扇特征;Ⅱ类外部形态和内部结构与Ⅰ类的类似,但两者的分布区域、滑动方向及其所形成的滑塌槽走向差异较大;Ⅲ类具有较强的侵蚀能力,底部具有线性擦痕;其内部变形发育叠瓦逆冲构造,表面形态往往起伏不平。
Based on the study of Pearl River Mouth basin and Niger Delta Basin,making use of high-resolution 3-D seismic data,drilling and logging data as well as regional geological data,the sedimentary architectures of the MTDs were discussed.The results show that three type MTDs are identified;slide blocks originated from the failures of continental slope(type-Ⅰ),slide blocks of submarine channel wall(type-Ⅱ) and slide-debris flow deposits complex(type-Ⅲ).The same type MTDs have certain similarities in geometry,internal texture,physical property,and stacking pattern.Type-I displays a lobate form.There is listric slump escarpment at the tail of the slide.Rotated blocks lie above a detachment surface.Listric fans are observed within the rotated blocks.The geometry and internal texture of the type-Ⅱ are same with the type-Ⅱ.But they have different distribution range,slide direction,and strike of the slump escarpment.The linear basal scars of the type-Ⅱ represent the stronger erosion capability.The rough topography of the MTDs is caused by the inner deformation which is indicated by thrust faults.
引文
[1]Posamentier H W,Kolla V.Seismic geomorphology andstratigraphy of depositional elements in deepwater settings[J].Journal of Sedimentary Research,2003,73(3):367-388.
    [2]Sawyer D E,Flemings P B,Shipp R C,et al.Seismicgeomorphology,lithology,and evolution of the late PleistoceneMars-Ursa turbidite region,Mississippi canyon area,northerngulf of Mexico[J].AAPG Bulletin,2007,91(2):215-234.
    [3]Zeng H L,Loucks R,Janson X,et al.Three-dimensional seismicgeomorphology and analysis of the Ordovician paleokarstdrainage system in the central Tabei Uplift,northern TarimBasin,western China[J].AAPG Bulletin,2011,95(12):2061-2083.
    [4]LI Lei,WANG Yingmin,XU Qiang,et al.Seismicgeomorphology and main controls of deep-water gravity flowsedimentary process on the slope of the northern South ChinaSea[J].Science China Earth Sciences,2012,55(5):747-757.
    [5]Tripsanas E K,Bryant W R,Phaneuf B A.Slope-instabilityprocesses caused by salt movements in a complex deep-waterenvironment,Bryant canyon area,northwest gulf of Mexico[J].AAPG Bulletin,2004,88(6):801-823.
    [6]吴时国,秦志亮,王大伟,等.南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J].地球物理学报,2011,54(12):3184-3195.WU Shiguo,QIN Zhiliang,WANG Dawei,et al.Seismiccharacteristics and triggering mechanism analysis of masstransport deposits in the northern continental slope of the SouthChina Sea[J].Chinese Journal of Geophysics,2011,54(12):3184-3195.
    [7]Moscardelli L,Wood L,Mann P.Mass-transport complexes andassociated processes in the offshore area of Trinidad andVenezuela[J].AAPG Bulletin,2006,90(7):1059-1088.
    [8]Garziglia S.Mass-transport deposits on the Rosetta province(NW Nile deep-sea turbidite system,Egyptian margin):Characteristics,distribution,and potential causal processes[J].Marine Geology,2008,250(3/4):180-198.
    [9]王大伟,吴时国,董冬冬,等.琼东南盆地第四纪块体搬运体系的地震特征[J].海洋地质与第四纪地质,2009,29(3):69-74.WANG Dawei,WU Shiguo,DONG Dongdong,et al.Seismiccharacteristics of Quaternary mass transport deposits inQiongdongnan basin[J].Marine Geology and QuaternaryGeology,2009,29(3):69-74.
    [10]李磊,王英民,张莲美,等.块体搬运复合体的识别、演化及其油气勘探意义[J].沉积学报,2010,28(1):7682.LI Lei,WANG Yingmin,ZHANG Lianmei,et al.Identificationand evolution of mass transport complexes and its significancefor oil and gas exploration[J].Acta Sedimentologica Sinica,2010,28(1):76-82.
    [11]王大伟,吴时国,吕福亮,等.南海深水块体搬运沉积体系及其油气勘探意义[J].中国石油大学学报,2011,35(5):14-19.WANG Dawei,WU Shiguo,LüFuliang,et al.Mass transportdeposits and its significance for oil&gas exploration indeep-water regions of South China Sea[J].Journal of China University of Petroleum,2011,35(5):14-19.
    [12]SUN Qiliang,WU Shiguo,Ludmann T,et al.Geophysicalevidence for cyclic sediment deposition on the southern slope ofQiongdongnan Basin,South China Sea[J].Marine GeophysicalResearch,2011,32(3):415-428.
    [13]Masson D G,van Niel B,Weaver P P E.Flow processes andsediment deformation in the Canary debris flow on the NWAfrican continental rise[J].Sedimentary Geology,1997,110(3/4):163-179.
    [14]Hesthammer J,Fossen H.Evolution of geometries ofgravitational collapse structures with examples from Statfjordfield,northern North Sea[J].Marine and Petroleum Geology,1999,16(3):259-281.
    [15]Cronin B,Owen D,Hartley A,et al.Slumps,debris flows andsandy deepwater channel systems:Implications for theapplication of sequence stratigraphy to deepwater clasticsediments[J].Journal of the Geological Society,1998,155(3):429-432.
    [16]Maslin M,Mikkelsen N,Vilela C,et al.Sea-level-andgas-hydrate-controlled catastrophic sediment failures of theAmazon fan[J].Geology,1998,26(12):1107-1110.
    [17]Armitage D A,Romans B W,Covault J A,et al.The influence ofmass transport deposit surface topography on the evolution ofturbidite architecture:The Sierra Contreras,Tres PasosFormation(Cretaceous),southern Chile[J].Journal ofSedimentary Research,2009,79(5):287-301.
    [18]Diaconescu C C,Kieckhefer R M,Knapp J H.Geophysicalevidence for gas hydrates in the deep water of the South CaspianBasin,Azerbaijan[J].Marine and Petroleum Geology,2001,18(2):209-221.
    [19]Marr J G,Harff P A,Shanmugam G,et al.Experiments onsubaqueous sandy gravity flows:The role of clay and watercontent in flow dynamics and depositional structures[J].Geological Society of America Bulletin,2001,113(11):1377-1386.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心