三角剪切断层传播褶皱作用理论与应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基底断层在沉积盖层中传播所形成的褶皱形态难以用平行膝折褶皱理论进行解释,这在于两者的流变学性质有很大差异。Erslev提出了三角剪切断层传播褶皱理论,认为下伏断层的脆性强破裂变形为向上变宽的三角形分布式剪切所调节,三角形顶点固定于断层端点。Hardy和Ford拓展了这一理论并成功地建立数字模拟模型,Allmendinger进一步建立与完善了三角剪切的正演模型与反演方法。通过运动学模型预测结果与天然构造观察和相似模拟实验结果的对比分析,以及通过一系列力学模型对运动学模型的检验,三角剪切断层传播褶皱理论被证实并获得了广泛应用。对前陆盆地、克拉通盆地和走滑盆地的基底卷入型构造与走滑或斜向滑动构造,都可以应用三角剪切断层传播褶皱理论来分析变形样式及其分布特征。该理论可以有效地预测隐伏断层的初始破裂点、断层传播量与发育部位,已成功地应用于工程地质与地震灾害预报等方面。
The fold geometry formed by propagation of basement fault into sedimentary cover is quite difficult to explain based on parallel folding theory owing to the marked rheological difference between the basement and the sedimentary cover. Erslev put forward a theory called the tri-shear fault propagation folding, which holds that the strong brittle deformation of underlying fault is accommodated by a triangular-like widening-upward distributional shear zone, and the triangle apex is pinned to the fault tip. Hardy and Ford put forward a mathematical method to model its evolution. Allmendinger succeeded in establishing the forward-and the inverse-modeling method of tri-shear folding based on Hardy and Ford's models. According to the comparison among the prediction by the kinematic models and the observation of natural structures and the results of analogous experiment, as well as a series of tests of mechanical models on the kinematic models, the tri-shear fault propagation folding has been proved and got a wide range of application. It can be used in the analyses of the deformation styles and the deformation distribution of the basement-involved or the strike-slip or the oblique-slip structures such as in the foreland basins, in the cratonic basins, or in the strike-slip basins. It can also be employed to predict effectively the blind fault nucleation point, the fault propagation amount, and its occurring stratigraphic intervals. Thus it has been applied successfully in such areas as engineering geology or forecasting of the earthquake.
引文
[1]Bally A W,Gordy P L,Stewart G A.Structure,seismic da-ta and orogenic evolution of the southern Canadian Rockies[J].Bulletin of Canadian Petroleum Geology,1966,14:337-381.
    [2]Barclay J E,Smith D G.Western Canada foreland basin oil and gas plays[M]∥MacQueen R W,Leckie D A.Foreland basins and fold belts.AAPG Memoir55,1992:81-105.
    [3]Erslev E A.Trishear fault-propagation folding[J].Geology,1991,19:617-620.
    [4]Erslev E A,Rogers J L.Basement-cover geometry of Laramide fault-propagation folds[M]∥Schmidt CJ,Chase R B,Erslev E A.Laramide basement deformationin the Rocky Mountain Foreland of the Western United States[M].Geo-logical Society of America Special Paper280,1993:125-146.
    [5]Erslev E A,Mayborn K R.Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt[J].Journal of Structural Geology,1997,19:321-335.
    [6]Mitra S,Mount V S.Foreland basement-involved structures[J].American Association of Petroleum Geologists Bulletin,1998,82:70-109.
    [7]Suppe J.Geometry and kinematics of fault-bend folding[J].American Journal of Science,1983,283:684-721.
    [8]Suppe J.Principles of structural geology[M].Englewood Cliffs,N.J.:Prentice-Hall Inc.,1985:537.
    [9]Suppe J,Medwedeff D.Geometry and kinematics of fault-propagation folding[J].Eclogae Geologicae Helvetiae,1990,83:409-454.
    [10]Suppe J,Chou G T,Hook S C.Rates of folding and faulting determined from growth strata[M]∥McClay K R.Thrust tectonics.London:Chapman&Hall,1992:105-121.
    [11]Narr W,Suppe J.Kinematics of basement-involved compres-sive structures[J].American Journal of Science,1993,294:302-360.
    [12]Shaw J H,Shearer P M.An elusive blind thrust fault be-neath metropolitan Los Angeles[J].Science,1999,283:516-1518.
    [13]All mendinger R W,ShawJ.Esti mation of fault propagation distance fromfold shape:i mplications for earthquake hazard assessment[J].Geology,2000,28:1099-1102.
    [14]Ford M,Williams E A,Artoni A,et al.Progressive evolu-tion of a fault propagation fold pair as recorded by growth strata geometries,Sant Llorenc de Morunys,SE Pyrenees[J].Journal of Structural Geology,1997,19:413-441.
    [15]Gawthorpe R L,Sharp I,Underhill J R,et al.Linked se-quence stratigraphic and structural evolution of propagating normal faults[J].Geology,1997,25:795-798.
    [16]Stearns D W.Faulting and forced folding in the Rocky Mountains foreland[M]∥Matthews VIII.Laramide folding associated with basement block faultingin the Western Unit-ed States.Geological Society of America Memoir151,1978:1-37.
    [17]Withjack M O,Meisling K E,Russell L R.Forced folding and basement-detached normal faulting in the Haltenbanken area,offshore Norway[J].American Association of Petrole-um Geologists Bulletin,1988,72:259.
    [18]Withjack MO,Olson J,Peterson E.Experi mental models of extensional forcedfolds[J].American Association of Petrole-um Geologists Bulletin,1990,74:1038-1054.
    [19]Johnson K M,Johnson A M.Mechanical models of trishear-like folds[J].Journal of Structural Geology,2002,24:277-287.
    [20]Johnson K M,Johnson A M.Mechanical analysis of the ge-ometry of forced-folds[J].Journal of Structural Geology,2002,24:401-410.
    [21]Mitra S.Fault-propagation folds:geometry,kinematic evo-lution,and hydrocarbon traps[J].AAPG Bulletin,1990,74:921-945.
    [22]Hardy S,Ford M.Numerical modeling of trishear fault prop-agation folding[J].Tectonics,1997,16:841-854.
    [23]Hardy S,McClay K R.Kinematic modeling of extensional fault propagation folding[J].Journal of Structural Geology,1999,21:695-702.
    [24]All mendinger R W.Inverse and forward modeling of trishear fault-propagation folds[J].Tectonics,1998,17:640-656.
    [25]All mendinger R W.Propagation-to-slip ratio andfold stylein fault-propagation folds:perspectives gleaned from trishear modeling[C]∥Geological Society of America Abstracts with Programs,1999,31(7):A237.
    [26]All mendinger R W,Zapata T,Manceda R,et al.Trishear ki-nematic modeling of structures,with examples from the Neuque n Basin,Argentina[M]∥McClay K R.Thrust tec-tonics and hydrocarbon systems.AAPG Memoir82,2004:356-371.
    [27]Mitra S,Islam Q T.Experi mental(clay)models of inversion structures[J].Tectonophysics,1994,230:211-222.
    [28]Mosar J,Suppe J.Role of shear in fault propagation folding[M]∥McClay K R.Thrust tectonics.London:Chapman&Hall,1992:377-390.
    [29]Zehnder A T,All mendinger R W.Velocity field for the tris-hear model[J].Journal of Structural Geology,2000,22:1009-1014.
    [30]Cardozo N,Bhalla K,Zehnder A,et al.Mechanical models of fault propagation folds and comparison to the trishear kine-matic model[J].Journal of Structural Geology,2003,25:1-18.
    [31]Finch E,Hardy S,Gawthorpe R.Discrete element modelling of contractional fault-propagation folding above rigid base-ment fault blocks[J].Journal of Structural Geology,2003,25:515-528.
    [32]Mora P,Place D.Alattice solid model for the non-linear dy-namics of earthquakes[J].International Journal of Modern Physics,1993,C4(6):1059-1074.
    [33]Haneberg WC.Drape folding of compressible elasticlayers—I.Analytical solutions for vertical uplift[J].Journal of Struc-tural Geology,1992,14:713-721.
    [34]Haneberg WC.Drape folding of compressible elasticlayers—II.Matrix solution for two-layer folds[J].Journal of Struc-tural Geology,1993,15:923-932.
    [35]Patton T L,Fletcher R C.Mathematical block-motion model for deformation of a layer above a buriedfault of arbitrary dip and sense of slip[J].Journal of Structural Geology,1995,17:1455-1472.
    [36]Cristallini E O,All mendinger R W.Pseudo3-D modeling of trishear fault-propagation folding[J].Journal of Structural Geology,2001,23:1883-1899.
    [37]Cristallini E O,Giambiagi L,All mendinger R W.True three-di mensional trishear:a kinematic model for strike-slip and oblique-slip deformation[J].GSA Bulletin,2004,116:938-952.
    [38]ShawJ H,Hook S C,Suppe J.Structural trend analysis by axial surface mapping—reply[J].American Association of Petroleum Geologists Bulletin,1996,80(5):780-787.
    [39]Harding T P.Seismic characteristics and identification ofnegative flower structures,positive flower structures,and positive structural inversion[J].American Association of Pe-troleum Geologists Bulletin,1985,69:582-600.
    [40]Naylor M A,Mandl G,Sijpesteijn C H K.Fault geometries in basement-induced wrench faulting under different initial stress states[J].Journal of Structural Geology,1986,8:737-752.
    [41]Sylvester A G.Strike-slipfaults[J].Geological Society of A-merica Bulletin,1988,100:1666-1703.
    [42]Reches Z.Analysis of faulting in three-di mensional strain field[J].Tectonophysics,1978,47:109-129.
    [43]Troxel B W,Butler P R.Multiple Quaternary deformation central of the Confidence Hills,Death Valley,California:an example of folding along a strike-slip fault zone[M]∥Troxel B W.Quaternary tectonics of southern Death Valley,Cali-fornia:field trip guide.Shoshone,California:B.W.Troxel Publications,1986:25-28.
    [44]Roussos N,Triantafyllos L.Structure of the central North Aegean Trough:an active strike-slip deformation zone[J].Basin Research,1991,3:39-48.
    [45]Tindall S E,Davis G H.Monocline development by oblique-slip fault-propagation folding:the East Kaibab monocline,Colorado Plateau,Utah[J].Journal of Structural Geology,1999,21:1303-1320.
    [46]Richard P,Krantz R W.Experi ments on fault reactivationin strike-slip mode[J].Tectonophysics,1991,188:117-131.
    [47]Dooley T,McClay K.Analogue modeling of pull-apart basins[J].American Association of Petroleum Geologists Bulletin,1997,81:1804-1826.
    [48]Jamison W R.Geometric analysis of fold development in o-verthrust terranes[J].Journal of Structural Geology,1989,9:207-219.
    [49]Dahlstrom C D A.Geometric constraints derived from the lawof conservation volume and applied to evolutionary mod-els for detachment folding[J].AAPG Bulletin,1990,74:336-344.
    [50]Epard J L,Groshong R H.Kinematic model of detachment foldingincludingli mb rotation,fixed hinges andlayer-parallel strain[J].Tectonophysics,1995,247:85-103.
    [51]Poblet J,McClay K.Geometry and kinematics of single-layer detachment folds[J].American Association of Petroleum Ge-ologists Bulletin,1996,80(7):1085-1109.
    [52]Wallace W K,Homza T X.Detachment folds versus fault-propagationfolds,andtheir truncation by thrust faults[M]∥McClay K R.Thrust tectonics and hydrocarbon systems.AAPG Memoir82,2004:324-355.
    [53]Rich J L.Mechanics of low-angle overthrust faulting asillus-trated by Cumberland thrust block,Virginia,Kentucky and Tennessee[J].American Association of Petroleum Geologists Bulletin,1934,18:1584-1596.
    [54]Meissner R,Strehlau J.Li mits of stresses in continental crust and their relation to the depth frequency distribution of shallowearthquakes[J].Tectonics,1982,1:73-89.
    [55]Sibson R H.Continental fault structure and the shallow earthquake source[J].Geological Society of London Journal,1983,140:741-767.
    [56]Scholz C H.The brittle-plastic transition and the depth of seismic faulting[J].Geologisches Rundschau,1988,77:319-328.
    [57]Scholz C H.The mechanics of earthquakes and faulting[M].Cambridge,UK:Cambridge University Press,1990:439.
    [58]Scott D R.Seismicity and stress rotationin a granular model of the brittle crust[J].Nature,1996,381:592-595.
    [59]Cristallini E O,All mendinger R W.Backli mb trishear:a ki-nematic model for curved folds developed over angular fault bends[J].Journal of Structural Geology,2002,24:289-295.
    [60]Schlische R W.Geometry and origin of fault-related folds in extensional settings[J].American Association of Petroleum Geologists Bulletin,1995,79:1661-1678.
    [61]SharpI R,Gawthorpe R L,Underhill J R,et al.Fault prop-agation foldingin extensional settings:examples of structural style and synrift sedi mentary response fromthe Suez Rift,Si-nai,Egypt[J].Geological Society of America Bulletin,2000,112:1877-1899.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心