2014年云南鲁甸M_S6.5地震震源运动学特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
使用中国数字地震台网记录的区域宽频带波形,通过频率域和时间域多步反演,研究了2014年云南鲁甸MS6.5地震震源运动学特征。基于点源的震源机制解揭示:地震发震断层面参数分别为走向342°/倾角83°/滑动角-34°,表现为一次左旋走滑型为主兼有少量正断倾滑分量的事件。质心在水平方向位于震中(103.354°E,27.109°N)东南约5.4km,最佳波形拟合的质心深度约4.4km,平均总标量地震矩M0为2.1×1018N·m,矩震级MW约6.1。破裂过程图像显示:此地震为一次不对称双侧破裂事件,破裂半径约10km,整个破裂面积为227.6km2,平均滑动量约0.16m。破裂在6s内释放了大多数能量,震后0~2s,破裂以孕震点为中心向NW和SE两侧同时扩展,2s后,破裂表现出明显的方向性,主要向SE(沿走向342°相反方向)扩展,故导致SE向多数台站视破裂持续时间总体偏小,最小值为2s。约6s后破裂基本趋于停止。推断鲁甸地震破裂在上地壳浅层集中释放了大多数能量是导致灾害严重的主要原因之一。
We employ multistep inversions in the frequency or time domain to infer the kinematic characteristics of the MS6. 5 Ludian,Yunnan earthquake in 2014,mainly using regional broadband waves recorded by the China Digital Seismic Network. In this paper,we firstly invert the focal mechanism solution and the centroid depth of the Ludian earthquake,and then determine the bestfitting finite-fault model and the dominant rupture direction. According to the above results,we further analyze and discuss the kinematic characteristics of the Ludian earthquake,and explore preliminarily the reason for the serious disaster caused by this event.We take into account some factors which could have effects on the inversion results,e. g. the use of different waves and simplified 1-D velocity models. Several test results indicate that the misfit between observed waves and synthetics is better,if we use the full waves and the 1-D velocity model( Model M2) in this study area. According to the point-source model( focal mechanism solution),this event occurs on a true rupture plane( strike = 342°,dip = 83°,and rake =- 34°),which shows a left-lateral strike-slip faulting with a minor normal oblique component. The centroid in the horizontal direction is located at nearly 5. 4km southeast of the epicenter( 27. 109°N /103. 354°E),and the bestfitting centroid depth is around 4. 4km. The total scalar moment,M0,is retrieved with an average value of 2. 1 × 1018N·m( or moment magnitude MW6. 1).The rupture history indicates the event can be considered to have an asymmetric bilateral rupture source with a radius of 10 km. The total rupture area is about 227. 6km2 with an average slip of nearly0. 16 m. Most of the energy releases within about 6s. From 0s to 2s,the energetic rupture starts at the nucleation center,then propagates bilaterally along the fault plane. After 2s,the rupture mainly extends south-east,showing an obvious rupture directivity. Finally,the rupture ends at nearly 6s.In order to investigate rupture directivity of the Ludian earthquake,we retrieve the apparent source duration at different stations,using the method developed by Cesca et al.( 2011). Rupture directivity of the Ludian earthquake is detected on the basis of a frequency domain inversion of the apparent duration at each station and the further interpretation of its azimuthal variation. The result indicates that it is obvious that the apparent source durations at majority of stations located southeast of the epicenter of the Ludian earthquake are relatively shorter,and the shortest one is round 2s.However,the apparent source durations of majority of stations distributed northwest of the epicenter are much longer,and the longest one is up to 9s. The mean value of apparent source durations of allstations is about 4. 96 s. Based on the principle of the Doppler effect,this result provides a clear indication for the rupture propagating towards southeast,and thus can be used to discriminate the true fault plane( NW- SE).In the end,we speculate that one of the most important reasons why the Ludian earthquake caused the devastating damage is that most of the energy is instantly released within relatively short duration in the shallow layer of the upper crust.
引文
房立华,吴建平,王未来,等.2014.云南鲁甸MS6.5地震余震重定位及其发震构造[J].地震地质,36(4):1173—1185.FANG Li-hua,WU Jian-ping,WANG Wei-lai,et al.2014.Relocation of the aftershock sequence of the MS6.5 Ludianearthquake and its seismogenic structure[J].Seismology and Geology,36(4):1173—1185(in Chinese).
    郝金来,王卫民,姚振兴.2014.2014年8月3日云南鲁甸6.5级地震震源破裂过程反演初步结果[R].北京:中国科学院地质与地球物理研究所.HAO Jin-lai,WANG Wei-min,YAO Zhen-xing.2014.Preliminary result for rupture process of Aug.3,2014,MS6.5earthquake,Ludian,Yunnan[R].Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing(inChinese).
    刘成利,郑勇,熊熊,等.2014.利用区域宽频带数据反演鲁甸MS6.5地震震源破裂过程[J].地球物理学报,57(9):3028—3037.LIU Cheng-li,ZHENG Yong,XIONG Xiong,et al.2014.Rupture process of MS6.5 Ludian earthquake constrained byregional broadband seismograms[J].Chinese Journal of Geophysics,57(9):3028—3037(in Chinese).
    王椿镛,Mooney W D,王溪莉,等.2002.川滇地区地壳上地幔三维速度结构研究[J].地震学报,24(1):1—16.WANG Chun-yong,Mooney W D,WANG Xi-li,et al.2002.Study on 3-D velocity structure of crust and upper mantlein Sichuan-Yunnan region,China[J].Acta Seismologica Sinica,24(1):1—16(in Chinese).
    王未来,吴建平,房立华,等.2014.2014年云南鲁甸MS6.5地震序列的双差定位[J].地球物理学报,57(9):3042—3051.WANG Wei-lai,WU Jian-ping,FANG Li-hua,et al.2014.Double difference location of the Ludian MS6.5 earthquakesequences in Yunnan Province in 2014[J].Chinese Journal of Geophysics,57(9):3042—3051(in Chinese).
    王卫民,赵连锋,李娟,等.2008.四川汶川8.0级地震震源过程[J].地球物理学报,51(5):1403—1410.WANG Wei-min,ZHAO Lian-feng,LI Juan,et al.2008.Rupture process of the MS8.0 Wenchuan earthquake ofSichuan,China[J].Chinese J Geophys,51(5):1403—1410(in Chinese).
    闻学泽,杜方,易桂喜,等.2013.川滇交界东段昭通、莲峰断裂带的地震危险背景[J].地球物理学报,56(10):3361—3372.doi∶10.603 8/cjg20131012.WEN Xue-ze,DU Fang,YI Gui-xi,et al.2013.Earthquake potential of the Zhaotong and Lianfeng Fault zones of theeastern Sichuan-Yunnan border region[J].Chinese J Geophys,56(10):3361—3372(in Chinese).
    许力生,张旭,严川,等.2014.基于勒夫波的鲁甸MS6.5地震震源复杂性分析[J].地球物理学报,57(9):3006—3017.XU Li-sheng,ZHANG Xu,YAN Chuan,et al.2014.Analysis of the Love waves for the source complexity of theLudian MS6.5 earthquake[J].Chinese Journal of Geophysics,57(9):3006—3017(in Chinese).
    徐涛,张明辉,田小波,等.2014.丽江清镇剖面上地壳速度结构及其与鲁甸MS6.5地震孕震环境的关系[J].地球物理学报,57(9):3069—3079.XU Tao,ZHANG Ming-hui,TIAN Xiao-bo,et al.2014.Upper crustal velocity of Lijiang-Qingzhen profile and itsrelationship with the seismogenic environment of the MS6.5 Ludian earthquake[J].Chinese Journal ofGeophysics,57(9):3069—3079(in Chinese).
    徐锡伟,江国焰,于贵华,等.2014.鲁甸6.5级地震发震断层判定及其构造属性讨论[J].地球物理学报,57(9):3060—3068.XU Xi-wei,JIANG Guo-yan,YU Gui-hua,et al.2014.Discussion on seismogenic fault of the Ludian MS6.5earthquake and its tectonic attribution[J].Chinese Journal of Geophysics,57(9):3060—3068(in Chinese).
    熊绍柏,郑晔,尹周勋,等.1993.丽江-攀枝花-者海地带二维地壳结构及其构造意义[J].地球物理学报,36(4):434—444.XIONG Shao-bai,ZHENG Ye,YIN Zhou-xun,et al.1993.The 2-D structure and its tectonic implications of the crustin the Lijiang-Panzhihua-Zhehai region[J].Chinese Journal Geophysics,36(4):434—444(in Chinese).
    张广伟,雷建设,梁姗姗,等.2014.2014年8月3日云南鲁甸MS6.5地震序列重定位与震源机制研究[J].地球物理学报,57(9):3018—3027.ZHANG Guang-wei,LEI Jian-she,LIANG Shan-shan,et al.2014.Relocations and focal mechanism solutions of the3 August 2014 Ludian,Yunnan MS6.5 earthquake sequence[J].Chinese Journal of Geophysics,57(9):3018—3027(in Chinese).
    张勇,许力生,陈运泰,等.2014.2014年8月3日云南鲁甸MW6.1(MS6.5)地震破裂过程[J].地球物理学报,57(9):3052—3059.ZHANG Yong,XU Li-sheng,CHEN Yun-tai,et al.2014.Rupture process of the 3 August 2014 Ludian,Yunnan,MW6.1(MS6.5)earthquake[J].Chinese Journal of Geophysics,57(9):3052—3059(in Chinese).
    赵旭,Duputel Zacharie,黄志斌,等.2014b.基于W震相技术的全球强震(Mw≥6.5)矩心矩张量自动反演系统评估[J].地震学报,36(5):800—809.ZHAO Xu,Duputel Zacharie,HUANG Zhi-bin,et al.2014b.Assessment of the automatic centroid moment tensorinversion system for global strong earthquakes(MW≥6.5)based on the W-phase method[J].Acta SeismologicaSinica,36(5):800—809(in Chinese).
    赵旭,黄志斌,房立华,等.2014a.四川芦山MS7.0强烈地震震源运动学特征[J].地球物理学报,57(2):419—429.ZHAO Xu,HUANG Zhi-bin,FANG Li-hua,et al.2014a.Kinematic characteristics of the source process of theLushan,Sichuan MS7.0 earthquake on 20 April 2013[J].Chinese Journal of Geophysics,57(2):419—429(inChinese).
    朱介寿,蔡学林,曹家敏,等.2005.中国华南及东海地区岩石圈三维结构及演化[M].北京:地质出版社.ZHU Jie-shou,CAI Xue-lin,CAO Jia-min,et al.2005.The Three-Dimensional Structure of Lithosphere and ItsEvolution in South China and Ease China Sea[M].Geological Publishing House,Beijing(in Chinese).
    Cesca S,Heimann S,Stammler K,et al.2010.Automated procedure for point and kinematic source inversion atregional distances[J].J Geophy Res,115(6):1—24.
    Cesca S,Heimann S,Dahm T.2011.Rapid directivity detection by azimuthal amplitude spectra inversion[J].Journal of Seismology,15(1):147—164.
    Custódio S,Cesca S,Heimann S.2012.Fast kinematic waveform inversion and robustness analysis:Application to the2007 MW5.9 Horseshoe Abyssal Plain earthquake offshore southwest Iberia[J].Bull Seism Soc Am,102(1):361—376.
    Domingues A,Custódio S,Cesca S.2013.Waveform inversion of small-to-moderate earthquakes located offshoresouthwest Iberia[J].Geophys J Int,192(1):248—259.
    Duputel Z,Rivera L,Kanamori H,et al.2012.W-phase fast source inversion for moderate to large earhquakes(1990-2010)[J].Geophys J Int,189(2):1125—1147.
    Dziewonski A,Chou T A,Woodhouse J H.1981.Determination of earthquake source parameters from waveform datafor studies of global and regional seismicity[J].J Geophys Res,86(B4):2825—2852.
    Ekstrm G,Dziewoński A,Maternovskaya N N,et al.2005.Global seismicity of 2003:Centroid-moment-tensorsolutions for 1087 earthquakes[J].Physics of the Earth and Planetary Interiors,148(2/3/4):327—351.
    Hartzell S,Liu P,Mendoza C,et al.2007.Stability and uncertainty of finite-fault slip inversions:Application to the2004 Parkfield,California,earthquake[J].Bull Seism Soc Am,97(6):1911—1934.
    Hartzell S H,Heaton T H.1983.Inversion of strong ground motion and teleseismic waveform data for the fault rupturehistory of the 1979 Imperial Valley,California earthquake[J].Bull Seism Soc Am,73:1153—1583.
    Hayes G P,Rivera L,Kanamori H.2009.Source inversion of the W-phase:Real-time implementation and extensionto low magnitudes[J].Seismol Res Lett,80(5):817—822.
    Heimann S.2011.A robust method to estimate kinematic earthquake source parameters[D].Ph D thesis.Universityof Hamburg,Hamburg,Germany,161 pp.
    Ji C,Wald D J,Helmberger D V.2002.Source description of the 1999 Hector Mine,California earthquake,Part I:Wavelet domain inversion theory and resolution analysis[J].Bull Seism Soc Am,92(4):1192—1207.
    Kanamori H,Rivera L.2008.Source inversion of W phase:Speeding up seismic tsunami warning[J].Geophys JInt,175(1):222—238.
    Mai P M,Monelli D,Festa G,et al.2007.Earthquake source inversion blindtest:Initial results and furtherdevelopment[J].Eos Trans,AGU,88(52):Fall Meet Suppl,Abstract S53C-08.
    Vavrycuk V,Kühn D.2012.Moment tensor inversion of waveforms:A two-step time-frequency approach[J].Geophys J Int,190:1761—1776.
    Wang R J.1999.A simple orthonormalization method for stable and efficient computation of Green's function[J].Bull Seism Soc Amer,89(3):733—741.
    Xu X W,Wen X Z,Zheng R Z,et al.2003.Pattern of latest tectonic motion and its dynamics for active blocks inSichuan-Yunnan region,China[J].Science in China(Ser D),46(2):210—226.
    Zhang P Z,Deng Q D,Zhang G M,et al.2003.Active tectonic blocks and strong earthquakes in the continent ofChina[J].Science in China(Ser D),46(Suppl 2):13—24.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心