龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对采自四川龙门山断裂带(LFZ)地震发生区段的样品进行摩擦滑动实验研究,得到一系列实验结果。实验样品包括用富含黏土的完整泥岩和砂岩制备的模拟断层泥、由富含方解石的灰岩制备的模拟断层泥和一种天然断层泥。其中,天然断层泥是通过人工探槽方法采自于穿过泥岩和砂岩层的地表破裂中。富含黏土矿物的样品主要由伊利石和石英组成。在实验中,将1 mm厚的断层泥夹于具有倾斜锯切面的围岩之间,在三轴实验系统中对其进行剪切变形实验,实验条件与龙门山断裂带2 km深处的条件相一致。实验温度范围为25℃~150℃,同时为了研究摩擦强度的速度依赖性,对剪切位移的速度实施1.22~0.122μm/s的阶跃式变化。分析结果表明,天然断层泥比原岩的泥岩和砂岩更富含伊利石,而且强度比原岩弱得多。天然断层泥的稳态摩擦系数约为0.4,而原岩则约为0.6。另外,灰岩断层泥的摩擦系数为0.6~0.7。除了灰岩,所有样品均表现为稳定、速度强化的滑动行为。灰岩在25℃~50℃表现为速度强化,但是在100℃~150℃时表现为准静态的振荡,在150℃时显示速度弱化行为。运用此次实验结果讨论沉积岩在类似于汶川地震这样的地震事件中所起的作用,指出该区域富含黏土的沉积层可能对从深部扩展而来的破裂扩展有阻尼作用,而灰岩则有可能会加速破裂的传播,同时产生明显的应力降。
This paper reports friction experiments performed on samples collected from the earthquake-hit region of the Longmenshan fault zone(LFZ).The materials tested consisted of simulated gouges prepared from intact clay-rich mudstone and sandstone,a calcite limestone,and a natural fault gouge from a trenched,surface rupture cutting the mudstone and sandstone.The clay-rich samples,including the natural fault gouge,were dominated by illite and quartz.In the experiments,1 mm thick gouge layers were sheared between saw-cut driver blocks,using a triaxial testing machine at conditions corresponding to 2 km depth in the LFZ.Temperature was varied from 25 ℃ to 150 ℃ and,to investigate the velocity dependence of friction,the shear displacement rate between 1.22 and 0.122 ?m/s was stepped.The results show that the natural fault gouge was more illite-rich and much weaker than the protolith mudstone and sandstone,and showed a steady-state friction coefficient of 0.4 compared with 0.6 for the latter.The limestone fault gouge displayed values of 0.6–0.7.All samples,except the limestone,showed stable,velocity-strengthening slip.The limestone showed velocity-strengthening at 25 ℃-50 ℃,but quasi-static oscillations at 100 ℃-150 ℃ along with velocity-weakening behavior at 150 ℃.The result is applied to discuss the role of the sedimentary rocks studied during events such as the Wenchuan earthquake;and it is argued that the clay-rich sediments of the region may have a damping effect upon ruptures propagating from depth;whereas the limestone may accelerate propagation,producing significant stress drops.
引文
[1]LIU Z J,ZHANG Z,WEN L,et al.Co-seismic ruptures of the 12thMay 2008,Ms 8.0 Wenchuan earthquake,Sichuan:East-west crustalshortening on oblique,parallel thrusts along the eastern edge ofTibet[J].Earth and Planetary Science Letters,2009,286(3–4):355–370.
    [2]XU X,WEN X,YU G,et al.Coseismic reverse-and oblique-slipsurface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake,China[J].Geology,2009,37(6):515–518.
    [3]HUANG Y,WU J,ZHANG T,et al.Relocation of the M8.0Wenchuan earthquake and aftershock sequence[J].Science ChinaEarth Sciences,2008,51(12):1 703–1 711.
    [4]U.S.Geological Survey Earthquake Hazards Program.USGS centralmoment tensor solution[R].[S.l.]:[s.n.],2009.http://neic.usgs.gov/neis/FM/neic_ryan_cmt.html,
    [5]PEI S,SU J,ZHANG H,et al.Three-dimensional seismic velocitystructure across the 2008 Wenchuan earthquake,Sichuan,China[J].Tectonophysics,2010,491(1–4):211–217.
    [6]WANG Z,FUKAO Y,PEI S P.Structural control of rupturing of theMw 7.9 2008 Wenchuan Earthquake,China[J].Earth and PlanetaryScience Letters,2009,279(1–2):131–138.
    [7]TULLIS T E.Rock friction constitutive behavior from laboratoryexperiments and its implications for an earthquake prediction fieldmonitoring program[J].Pure and Applied Geophysics,1988,126(2–4):555–588.
    [8]SYKES L R,SHAW B E,SCHOLZ C H.Rethinking earthquakeprediction[J].Pure and Applied Geophysics,1999,155(2–4):207–232.
    [9]REBETSKII Y L.Development of the method of cataclastic analysisof shear fractures for tectonic stress estimation[J].Doklady EarthSciences,2003,388(2):237–241.
    [10]SCHOLZ C H.The mechanics of earthquakes and faulting[M].Cambridge:Cambridge University Press,2002.
    [11]BOATWRIGHT J,COCCO M.Frictional constraints on crustalfaulting[J].Journal of Geophysical Research,1996,101(B6):13 895–13 909.
    [12]TINTI E,BIZARRI A,COCCO M.Modelling the dynamic rupturepropagation on heterogeneous faults with rate-and state-dependentfriction[J].Annales Geophysicae,2005,48(2):327–345.
    [13]MIZOGUCHI K,TAKAHASHI M,TANIKAWA W,et al.Frictionalstrength of fault gouge in Taiwan Chelungpu fault obtained fromTCDP hole B[J].Tectonophysics,2008,460(1–4):198–205.
    [14]ZHANG P Z,SHEN Z,WANG M,et al.Continuous deformation ofthe Tibetan Plateau from global positioning system data[J].Geology,2004,32(9):809–812.
    [15]DENSMORE A L,ELLIS M A,LI Y,et al.Active tectonics of theBeichuan and Pengguan faults at the eastern margin of the Tibetanplateau[J].Tectonics,2007,26:TC4005.
    [16]XU Z,JI S,LI H,et al.Uplift of the Longmen Shan range and theWenchuan earthquake[J].Episodes,2008,31(3):291–301.
    [17]HUBBARD J,SHAW J H.Uplift of the Longmen Shan and Tibetanplateau,and the 2008 Wenchuan(M=7.9)earthquake[J].Nature,2009,458:194–197.
    [18]TANG L J,YANG K M,JIN W Z,et al.Multi-level decollementzones and detachment deformation of Longmenshan thrust belt,Sichuan Basin,southwest China[J].Science in China Series D:EarthSciences,2008,51(2):32–43.
    [19]ZHU R K,ZHAO X,LIU L H,et al.Depositional system andfavorable reservoir distribution of Xujiahe Formation in SichuanBasin[J].Petroleum Exploration and Development,2009,36(1):46–55.
    [20]LAPUSTA N,RICE J R.Nucleation and early seismic propagation ofsmall and large events in a crustal earthquake model[J].Journal ofGeophysical Research,2003,108(B4):2 205–2 222.
    [21]PATERSON M S,WONG T F.Friction and sliding phenomena,inexperimental rock deformation:the brittle field[M].Berlin,Heidelberg:Springer,2005:165–209.
    [22]BRACE W F,BYERLEE J D.Stick slip as a mechanism forearthquakes[J].Science,1966,153(3 739):990–992.
    [23]DIETERICH J H.Time-dependent friction in rocks[J].Journal ofGeophysical Research,1972,77(20):3 690–3 697.
    [24]DIETERICH J H.Modelling of rock friction:1.Experimental resultsand constitutive equations[J].Journal of Geophysical Research,1979,84(B5):2 161–2 168.
    [25]DIETERICH J H.Constitutive properties of faults with simulatedgouge[C]//CARTER N L,FRIEDMAN M,LOGAN J M,et al ed.Mechanical behavior of crustal rocks,The Handin Volume.Washington D.C.:American Geophysical Union,1981:103–120.
    [26]SCHOLZ C H,ENGELDER J T.The role of asperity indentation andploughing in rock friction-I:asperity creep and stick-slip[J].International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1976,13(5):149–154.
    [27]RUINA A L.Slip instability and state variable friction laws[J].Journalof Geophysical Research,1983,88(B12):10 359–10 370.
    [28]RICE J R,RUINA A L.Stability of steady frictional slipping[J].Journal of Applied Mechanics,1983,50(2):343–349.
    [29]GU J C,RICE J R,RUINA A L,et al.Slip motion and stability of asingle degree of freedom elastic system with rate and state dependentfriction[J].Journal of the Mechanics and Physics of Solids,1984,32(3):167–196.
    [30]LINKER M F,DIETERICH J H.Effects of variable normal stress onrock friction:observations and constitutive equations[J].Journal ofGeophysical Research,1992,97(B4):4 923–4 940.
    [31]MARONE C.Laboratory-derived friction laws and their application toseismic faulting[J].Annual Review of Earth and Planetary Sciences,1998,26:643–696.
    [32]PERRIN G,RICE J R,ZHENG G T.Self-healing slip pulse on africtional surface[J].Journal of the Mechanics and Physics of Solids,1995,43(9):1 461–1 495.
    [33]HE C,WONG T F,BEELER N M.Scaling of stress drop withrecurrence interval and loading velocity for laboratory derived faultstrength relations[J].Journal of Geophysical Research,2003,108:2 037–2 049.
    [34]AMPUERO J P,RUBIN A M.Earthquake nucleation on rate and statefaults-aging and slip laws[J].Journal of Geophysical Research,2008,113(B0):1 302–1 322.
    [35]DIETERICH J H,KILGORE B D.Direct observation of frictionalcontacts:new insights for state-dependent properties[J].Pure andApplied Geophysics,1994,143(1–3):283–302.
    [36]DIETERICH J H,KILGORE B D.Imaging surface contacts:powerlaw contact distributions and contact stresses in quartz,calcite,glassand acrylic plastic[J].Tectonophysics,1996,256(1–4):219–239.
    [37]TSE S T,RICE J R.Crustal earthquake instability in relation to thedepth variation of frictional slip properties[J].Journal of GeophysicalResearch,1986,91(B9):9 452–9 472.
    [38]RUDNICKI J W.Physical models of earthquake instability andprecursory processes[J].Pure and Applied Geophysics,1988,126(2–4):531–554.
    [39]DIETERICH J H.Earthquake nucleation on faults with rate andstate-dependent strength[J].Tectonophysics,1992,211(1–4):115–134.
    [40]LOCKNER D A,SUMMERS R,BYERLEE J D.Effects oftemperature and sliding rate on frictional strength of granite[J].Pureand Applied Geophysics,1986,124(3):445–469.
    [41]BIEGEL R L,SAMMIS C G,DIETERICH J H.The frictionalproperties of a simulated gouge having a fractal particle distribution[J].Journal of Structural Geology,1989,11(7):827–846.
    [42]KILGORE B D,BLANPIED M L,DIETERICH J H.Velocitydependent friction of granite over a wide range of conditions[J].Geophysical Research Letters,1993,20(10):903–906.
    [43]SAFFER D M,MARONE C.Comparison of smectite-and illite-richgouge frictional properties:application to the updip limit of theseismogenic zone along subduction megathrusts[J].Earth and PlaneterayScience Letters,2003,215(1–2):219–235.
    [44]BLANPIED M L,LOCKNER D A,BYERLEE J D.Frictional slip ofgranite at hydrothermal conditions[J].Journal of GeophysicalResearch,1995,100(B7):13 045–13 064.
    [45]HE C R,YAO W,WANG Z,et al.Strength and stability of frictionalsliding of gabbro gouge at elevated temperatures[J].Tectonophysics,2006,427(1–4):217–229.
    [46]HE C,WANG Z,YAO W.Frictional sliding of gabbro gouge under hydrothermal conditions[J].Tectonophysics,2007,445(3–4):353–362.
    [47]TULLIS T E,WEEKS J D.Constitutive behavior and stability offrictional sliding of granite[J].Pure and Applied Geophysics,1986,124(3):383–414.
    [48]REINEN L A,WEEKS J D.Determination of rock frictionconstitutive parameters using an iterative least squares inversionmethod[J].Journal of Geophysical Research,1993,98(B9):15 937–15 950.
    [49]JIANG X,JIN Y.Mapping the deep lithospheric structure beneath theeastern margin of the Tibetan Plateau from gravity anomalies[J].Journal of Geophysical Research,2005,110(B0):7 407–7 420.
    [50]WANG J Y.Geothermics in China[M].Beijing:Seismological Press,1996.
    [51]HE C,MA S.Dynamic fault motion under variable normal stresscondition with rate and state dependent friction[C]//ZHENG Y ed.Proceedings of 30th International Geological Congress.Utrecht:VSP,1997,14:41–51.
    [52]HE C,MA S L,HUANG J G.Transition between stable sliding andstick-slip due to variation in slip rate under variable normal stressconditions[J].Geophysical Research Letters,1998,25(17):3 235–3 238.
    [53]VERBERNE B A,HE C,SPIERS C J.Frictional properties ofsedimentary rocks and natural fault gouge from the LongmenshanFault Zone,Sichuan,China[J].Bulletin of the Seismological Societyof America,2010,100(B5):2 767–2 790.
    [54]LOGAN J M,RAUENZAHN K A.Frictional dependence of gougemixtures of quartz and montmorillonite on velocity,composition andfabric[J].Tectonophysics,1987,144(1–3):87–108.
    [55]BROWN K M,KOPF A,UNDERWOOD M B,et al.Compositionaland fluid pressure controls on the state of stress on the Nankaisubduction thrust:a weak plate boundary[J].Earth and PlaneterayScience Letters,2003,214(3–4):589–603.
    [56]TAKAHASHI M,MIZOGUCHI K,KITAMURA K,et al.Effects ofclay content on the frictional strength and fluid transport property offaults[J].Journal of Geophysical Research,2007,112:B08206.
    [57]CRAWFORD B R,FAULKNER D R,RUTTER E H.Strength,porosity,and permeability development during hydrostatic and shearloading of synthetic quartz-clay fault gouge[J].Journal of GeophysicalResearch,2008,113:B03207.
    [58]TEMBE S,LOCKNER D A,WONG T F.Effect of clay content andmineralogy on frictional sliding behavior of simulated gouges:binary and ternary mixtures of quartz,illite and montmorillonite[J].Journalof Geophysical Research,2010,115:B03416.
    [59]VROLIJK P,VAN DER PLUIJM B A.Clay gouge[J].Journal ofStructural Geology,1999,21(8–9):1 039–1 048.
    [60]SOLUM J G,VAN DER PLUIJM B A,PEACOR D R.Neocrystallization,fabrics and age of clay minerals from an exposureof the Moab Fault,Utah[J].Journal of Structural Geology,2005,27(9):1 563–1 576.
    [61]SOLUM J G,VAN DER PLUIJM B A.Quantification of fabrics inclay gouge from the Carboneras fault,Spain and implications for faultbehavior[J].Tectonophysics,2009,475(3–4):554–562.
    [62]WINTSCH R P,CHRISTOFFERSON R,KRONENBERG A K.Fluid-rock reaction weakening of fault zones[J].Journal of GeophysicalResearch,1995,100(B7):13 021–13 032.
    [63]IKARI M J,SAFFER D M,MARONE C.Effect of hydration state onthe frictional properties of montmorillonite-based fault gouge[J].Journal of Geophysical Research,2007,112:B06423.
    [64]SHIMAMOTO T,LOGAN J M.Effects of simulated fault gouge onthe sliding behavior of Tennessee sandstone:nonclay gouges[J].Journal of Geophysical Research,1981,86(B4):2 902–2 914.
    [65]BARTON N.The shear strength of rock and rock joints[J].International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1976,13(9):255–279.
    [66]ABAD I.Physical meaning and applications of the illite Kübler index:measuring reaction progress in low-grade metamorphism[C]//NIETOF,MILLAN J J ed.Diagenesis and Low-Temperature Metamorphism,Theory,Methods and Regional Aspects,Seminarios.SociedadEspanola:Sociedad Espanola Mineralogia,2007:53–64.
    [67]DIETERICH J H,CONRAD G.Effect of humidity on time-andvelocity-dependent friction in rocks[J].Journal of GeophysicalResearch,1984,89(B6):4 196–4 202.
    [68]SOLBERG P,BYERLEE J D.Note on the rate sensitivity of frictionalsliding of westerly granite[J].Journal of Geophysical Research,1984,89(B6):4 203–4 206.
    [69]MARONE C,RALEIGH C B,SCHOLZ C H.Frictional behavior andconstitutive modeling of simulated fault gouge[J].Journal ofGeophysical Research,1990,95(B5):7 007–7 026.
    [70]WONG T F,ZHAO Y S.Effects of load point velocity on frictionalinstability behavior[J].Tectonophysics,1990,175(1–3):177–195.
    [71]WONG T F,GU Y,YANAGIDANI T,et al.Stabilization of faulting by cumulative slip[C]//EVANS B,WONG T F ed.Fault mechanicsand transport properties of rocks.New York:Elsevier AcademicPress,1992:109–133.
    [72]WU F T,BLATTER T,ROBERSON H.Clay gouges in the SanAndreas Fault System and their possible implications[J].Pure andApplied Geophysics,1975,113(1):87–95.
    [73]MORROW C A,MOORE D E,LOCKNER D A.The effect ofmineral bond strength and adsorbed water on fault gouge frictionalstrength[J].Geophysical Research Letters,2000,27(6):815–818.
    [74]MOORE J C,SAFFER D.Updip limit of the seismogenic zonebeneath the accretionary prism of southwest Japan:an effect ofdiagenetic to low-grade metamorphic processes and increasingeffective stress[J].Geology,2001,29(2):183–186.
    [75]SUMMERS R,BYERLEE J D.A note on the effects of fault gougecomposition on the stability of frictional sliding[J].InternationalJournal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts,1977,14(3):155–160.
    [76]MOORE D E,LOCKNER D A,MA S,et al.Strengths of serpentinitegouges at elevated temperatures[J].Journal of Geophysical Research,1997,102(B7):14 787–14 801.
    [77]BOS B,SPIERS C J.Effect of phyllosilicates on fluid-assisted healingof gouge-bearing faults[J].Earth and Planetary Science Letters,2000,184(1):199–210.
    [78]BOS B,SPIERS C J.Experimental investigation into the microstructuraland mechanical evolution of phyllosilicate-bearing fault rock underconditions favouring pressure solution[J].Journal of Structural Geology,2002,23(8):1 187–1 202.
    [79]NIEMEIJER A R,SPIERS C J.Velocity dependence of strength andhealing behaviour in simulated phyllosilicate-bearing fault gouge[J].Tectonophysics,2006,427(1–4):231–253.
    [80]NIEMEIJER A R,SPIERS C J.A microphysical model for strongvelocity weakening in phyllosilicate-bearing fault gouges[J].Journalof Geophysical Research,2007,112:B10405.
    [81]ATKINSON B K.Subcritical crack growth in geologic materials[J].Journal of Geophysical Research,1984,89(B6):4 077–4 114.
    [82]MAILLOT B,KOYI H.Thrust dip and thrust refraction in fault-bendfolds:analogue models and theoretical predictions[J].Journal ofStructural Geology,2006,28(1):36–49.
    [83]KANAMORI H.The nature of seismicity patterns before largeearthquakes[C]//SIMPSON D,RICHARDS P G ed.Earthquakeprediction,An International review.Washington D.C.:AmericanGeophysical Union,1981:1–19.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心