中国大陆及邻区上地幔P波各向异性结构
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用分布在中国大陆及邻近地区的213个地震台站记录到的远震P波走时数据和弱各向异性条件下P波速度扰动调和分析方法,研究了中国大陆上地幔P波各向异性结构.研究结果表明中国大陆西部上地幔变形主要受印度大陆俯冲的影响.印度大陆的P波快波方向总体为NNE方向,与绝对板块运动方向一致,这表明印度大陆上地幔流动方向与板块运动方向一致.青藏高原内部、东天山的P波快波方向与主压应力方向接近,而在青藏高原南缘、北缘及东北缘等块体边界地区P波快波方向与主压应力方向垂直.中国大陆东部上地幔变形主要受菲律宾板块和太平洋板块俯冲的影响.在扬子板块内部P波快波方向为SE方向,这与绝对板块的运动方向一致.华北地区的各向异性结构较为复杂,可能与华北克拉通裂解有关.中国大陆东北的东部平均方向为SE,而在兴安岭一侧为SSW方向,即平行于构造线方向.根据各向异性的倾角,中国大陆及邻区上地幔各向异性结构大体可分为三块:1)青藏新疆地区的各向异性倾角接近水平,推测该区形变力源主要为上地幔物质水平流动.2)南北带地区的各向异性倾角较大,特别是在青藏东缘地区的倾角约为40°,这可能是由于青藏向东挤出过程中受华南地块和鄂尔多斯地块的阻挡,在板块边界地区产生了垂直变形.3)中国东部地区各向异性结构较为复杂,在中国大陆东北部各向异性倾角接近水平,这可能是该区上地幔变形主要受太平洋板块俯冲的影响,而在太行山、大别—苏鲁地区各向异性倾角较大,这表明该区上地幔以垂直变形为主.
The P-wave anisotropic structures of upper-mantle beneath China mainland and adjacent areas are obtained by using teleseismic P-wave traveltime data recorded by 213 permanent seismic stations and the harmonic decomposition analysis of qP velocity perturbation under the condition of weak anisotropy.The results show that the deformation of upper-mantle in China mainland is mainly controlled by the subduction of Indian,Philippine Sea and Pacific plates.In the Indian plate,the fast P-wave directions are roughly in NNE,which is consistent with the absolute plate motion.This implies that the direction of the mantle flow is consistent with the absolute plate motion.The fast P-wave directions are parallel to the direction of the principal stress in central Tibet,eastern Tianshan,while perpendicular to the direction of the principal stress in southern,northern and northeast margins of Tibet.In the Yangtze block,the fast P-wave direction trends SE,parallel to the absolute plate motion and perpendicular to the main tectonic lines.In North China,the anisotropic pattern is complex,which is perhaps associated with the decomposition of the ancient craton.In Northeast China,the average fast P-wave direction trends SE,and SSW in the Xinganling area which is parallel to the tectonic line.According to the dipping angle of fast P-wave,the anisotropic structure in China mainland and adjacent areas can be roughly divided into three regions: 1) The dip angle of fast P-wave in Tibet and Xinjiang regions are nearly horizontal,which implies that the upper-mantle deformation is mainly affected by horizontal drag.2) In the north-south tectonic zone,especially in eastern Tibet,the dip angles turn to steep.These indicate that the Yangtze block and Ordos obstruct the escape flow of Tibet,and produce vertical deformation in boundary areas.3) In Northeast China,the dip angles of fast P-wave are nearly horizontal.It means that the deformation style is mainly affected by the horizontal mantle flow caused by subduction of the Pacific plate.The dip angles of fast P-wave are very large beneath the Taihang and Dabie Mountain,which implies that the vertical deformation is predominant in these regions.
引文
[1]Montagner J P,Griot-Pommera D A,LavéJ.How to relatebody wave and surface wave anisotropy?J.Geophys.Res.,2000,105(B8):19015-19027.
    [2]Babuska V,Cara M.Seismic Anisotropy in the Earth.Boston:Kluwer Academic Publishers,1991.
    [3]Zhang S Q,Karato S I.Lattice preferred orientation ofolivine aggregates deformed in simple shear.Nature,1995,375(6534):774-777.
    [4]Tommasi A.Forward modeling of the development of seismicanisotropy in the upper mantle.Earth Planet.Sci.Lett.,1998,160(1-2):1-13.
    [5]Park J,Levin V.Seismic anisotropy:Tracing plate dynamicsin the mantle.Science,2002,296(5567):485-489.
    [6]Okaya D A,McEvilly T V.Elastic wave propagation inanisotropic crustal material possessing arbitrary internal tilt.Geophys.J.Int.,2003,153(2):344-358.
    [7]Ribe N M.On the relation between seismic anisotropy andfinite strain.J.Geophys.Res.,1992,97(B6):8737-8747.
    [8]Jung H,Karato S I.Water-induced fabric transitions inolivine.Science,2001,293(5534):1460-1463.
    [9]Kaminski,Ribe N M.Timescales for the evolution ofseismic anisotropy in mantle flow.Geochem.Geophys.Geosyst.,2002,3:1051,doi:10.1029/2001GC000222.
    [10]Beghein C,Trampert J.Probability density functions forradial anisotropy from fundamental mode surface wave dataand the Neighbourhood Algorithm.Geophys.J.Int.,2004,157(3):1163-1174.
    [11]McKenzie D.Finite deformation during fluid flow.Geophys.J.R.Astr.Soc.,1979,58(3):687-715.
    [12]Ribe N M.Seismic anisotropy and mantle flow.J.Geophys.Res.,1989,94(B4):4213-4223.
    [13]Becker T W,Kellogg J B,Ekstrm G,et al.Comparison ofazimuthal seismic anisotropy from surface waves and finitestrain from global mantle-circulation models.Geophys.J.Int.,2003,155(2):696-714.
    [14]Gaboret C,Forte A M,Montagner J P.The uniquedynamics of the Pacific Hemisphere mantle and its signatureon seismic anisotropy.Earth Planet.Sci.Lett.,2003,208(3-4):219-233.
    [15]Blackman D K,Wenk H R,Kendall J M.Seismic anisotropyof the upper mantle:1.Factors that affect mineral textureand effective elastic properties.Geochem.Geophys.Geosyst.,2002,3:8601,doi:10.1029/2001GC000248.
    [16]Schulte-Pelkum V,Blackman D K.A synthesis of seismic Pand S anisotropy.Geophys.J.Int.,2003,154(1):166-178.
    [17]Silver P G,Chan W W.Implications for continental structureand evolution from seismic anisotropy.Nature,1988,335(6185):34-39.
    [18]Vinnik L P,Farra F,Romanowicz B.Azimuthal anisotropyin the Earth from observations of SKS at GEOSCOPE andNARS broadband stations.Bull.Seism.Soc.Am.,1989,79(6):1542-1558.
    [19]Savage M K,Silver P G,Meyer R P.Observations ofteleseismic shear-wave splitting in the Basin and Range fromportable and permanent stations.Geophys.Res.Lett.,1990,17(1):21-24.
    [20]Fouch M J,Fischer K M,Parmentier E M,et al.Shear wavesplitting,continental keels,and patterns of mantle flow.J.Geophys.Res.,2000,105(B3):6255-6275.
    [21]Silver P G.Seismic anisotropy beneath the continents:Probing the depths of geology.Annu.Rev.Earth Plant.Sci.,1996,24:385-432.
    [22]Chen Y,Zhang Z J,Sun C Q,et al.Crustal anisotropy fromMoho converted Ps wave splitting analysis and geodynamicimplications beneath the eastern margin of Tibet andsurrounding regions.Gondwana Res.,2012,doi:10.1016/j.gr.2012.04.003.
    [23]Vinnik L P,Makeyeva L I,Milev A,et al.Global patternsof azimuthal anisotropy and deformations in the continentalmantle.Geophys.J.Int.,1992,111(3):433-447.
    [24]Chen Y,Badal J,Zhang Z J.Radial anisotropy in the crustand upper mantle beneath the Qinghai-Tibet Plateau andsurrounding regions.J.Asian Earth Sci.,2009,36(4-5):289-302.
    [25]Montagner J P,Nataf H C.A simple method for invertingthe azimuthal anisotropy of surface waves.J.Geophys.Res.,1986,91(B1):511-520.
    [26]Trampert J,Woodhouse J H.Global anisotropic phasevelocity maps for fundamental mode surface waves between40and 150s.Geophys.J.Int.,2003,154(1):154-165.
    [27]Boschi L,Ekstrom G.New images of the Earth’s uppermantle from measurements of surface wave phase velocityanomalies.J.Geophys.Res.,2002,107(B4):1-20.
    [28]Shapiro N M,Ritzwoller M H.Monte-Carlo inversion for aglobal shear velocity model of the crust and upper mantle.Geophys.J.Int.,2002,151(1):88-105.
    [29]Forsyth D W,Li A.Array-analysis of two-dimensionalvariations of surface wave phase velocity and azimuthalanisotropy in the presence of multipathing interference.//Levander A,Nolet G.Seismic Data Analysis and Imagingwith Global and Local Arrays.Washington,DC:AGU,2005.
    [30]Babuˇska V,PlomerováJ,ˇSileny J.Spatial variations of Presiduals and deep structure of the European lithosphere.Geophys.J.R.Astr.Soc.,1984,79(1):363-383.
    [31]Martynov V G,Vernon F L,Kilb D L,et al.Directionalvariations in travel-time residuals of teleseismic P Waves inthe crust and mantle beneath northern Tien Shan.Bull.Seism.Soc.Am.,2004,94(2):650-664.
    [32]PlomerováJ,Babuˇska V,ˇSíleny J,et al.Seismic anisotropyand velocity variations in the mantle beneath theSaxothuringicum-Moldanubicum contact in central Europe.Pure Appl.Geophys.,1998,151(2-4):365-394.
    [33]PlomerováJ,Margheriti L,Park J,et al.Seismic anisotropybeneath the Northern Apennines(Italy):Mantle flow orlithosphere fabric?Earth Planet.Sci.Lett.,2006,247(1-2):157-170.
    [34]S′roda P.Seismic anisotropy of the upper crust insoutheastern Poland-effect of the compressional deformationat the EEC margin:results of CELEBRATION 2000seismicdata inversion.Geophys.Res.Lett.,2006,33:L22302.
    [35]Yin A.Cenozoic tectonic evolution of Asia:apreliminarysynthesis.Tectonophysics,2010,488(1-4):293-325.
    [36]Zhu R X,Chen L,Wu F Y,et al.Timing,scale andmechanism of the destruction of the North China Craton.Sci.China Earth Sci.,2011,54(6):789-797.
    [37]Tapponnier P,Peltzer G,Le Dain A Y,et al.Propagatingextrusion tectonics in Asia:New insights from simpleexperiments with plasticine.Geology,1982,10(12):611-616.
    [38]Liang C T,Song X D,Huang J L.Tomographic inversion ofPn travel times in China.J.Geophys.Res.,2004,109:B11304,doi:10.1029/2003JB002789.
    [39]Pei S P,Zhao J M,Sun Y S,et al.Upper mantle seismicvelocities and anisotropy in China determined through Pn andSn tomography.J.Geophys.Res.,2007,112:B05312,doi:10.1029/2006JB004409.
    [40]罗艳,黄忠贤,彭艳菊等.中国大陆及邻区SKS波分裂研究.地球物理学报,2004,47(5):812-821.Luo Y,Huang Z X,Peng Y J,et al.A study on SKS wavesplitting beneath the China mainland and adjacent regions.Chinese J.Geophys.(in Chinese),2004,47(5):812-821.
    [41]Fu Y Y,Chen Y S,Li A B.Seismic anisotropy beneath theChinese mainland.Earthquake Science,2010,23(6):583-595.
    [42]彭艳菊,黄忠贤,苏伟等.中国大陆及邻区海域地壳上地幔各向异性研究.地球物理学报,2007,50(3):751-759.Peng Y J,Huang Z X,Su W,et al.Anisotropy in crust andupper mantle beneath China continent and its adjacent seas.Chinese J.Geophys.(in Chinese),2007,50(3):751-759.
    [43]易桂喜,姚华建,朱介寿等.用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征.地球物理学报,2010,53(2):256-268.Yi G X,Yao H J,Zhu J S,et al.Lithospheric deformation ofcontinental China from Rayleigh wave azimuthal anisotropy.Chinese J.Geophys.(in Chinese),2010,53(2):256-268.
    [44]Huang Z X,Peng Y J,Luo Y,et al.Azimuthal anisotropy ofRayleigh waves in East Asia.Geophys.Res.Lett.,2004,31:L15617,doi:10.1029/2004GL020399.
    [45]Savage M K.Seismic anisotropy and mantle deformation:what have we learned from shear wave splitting?Rev.Geophys.,1999,37(1):65-106.
    [46]Backus G E.Possible forms of seismic anisotropy of theuppermost mantle under oceans.J.Geophys.Res.,1965,70(14):3429-3439.
    [47]Bird P.An updated digital model of plate boundaries.Geochem.Geophys.Geosyst.,2003,4:1027,doi:10.1029/2001GC000252.
    [48]Bassin C,Laske G,Masters G.The current limits ofresolution for surface wave tomography in North America.EOS Trans.AGU,2000,81:F897.
    [49]Bokelmann G H R.Convection-driven motion of the NorthAmerican craton:evidence from P-wave anisotropy.Geophys.J.Int.,2002,148(2):278-287.
    [50]Ringwood A E.Composition and Petrology of the Earth’sMantle.New York:McGraw-Hill,1975.
    [51]Karato S I,Li P.Diffusion creep in perovskite:Implicationsfor the rheology of the lower mantle.Science,1992,255(5049):1238-1240.
    [52]Ismail W B,Mainprice D.An olivine fabric database:Anoverview of upper mantle fabrics and seismic anisotropy.Tectonophysics,1998,296(1-2):145-157.
    [53]郭飚.非均匀各向异性介质的地震P波走时层析成像研究[博士论文].北京:中国地震局地质研究所,2009.Guo B.Seismic P-wave travel-time tomography in heterogeneousand anisotropic media[Ph.D.thesis](in Chinese).Beijing:Institute of Geology,CEA,2009.
    [54]Gripp A E,Gordon R G.Young tracks of hotspots andcurrent plate velocities.Geophys.J.Int.,2002,150(2):321-361.
    [55]McNamara D E,Owens T J,Silver P G,et al.Shear waveanisotropy beneath the Tibetan Plateau.J.Geophys.Res.,1994,99(B7):13655-13665.
    [56]Huang Z C,Wang L S,Zhao D P,et al.Seismic anisotropyand mantle dynamics beneath China.Earth Planet.Sci.Lett.,2011,306(1-2):105-117.
    [57]Heidbach O,Tingay M,Barth A,et al.Global crustal stresspattern based on the World Stress Map database release2008.Tectonophysics,2010,482(1-4):3-15,doi:10.1016/j.tecto.2009.07.023.
    [58]Zhao L,Zheng T Y,Lu G,et al.No direct correlation ofmantle flow beneath the North China Craton to the India-Eurasia collision:constraints from new SKS wave splittingmeasurements.Geophys.J.Int.,2011,187(2):1027-1037.
    [59]Lev E,Long M D,van der Hilst R D.Seismic anisotropy inEastern Tibet from shear wave splitting reveals changes inlithospheric deformation.Earth Planet.Sci.Lett.,2006,251(3-4):293-304.doi:10.1016/j.epsl.2006.09.018.
    [60]Zhao L,Zheng T Y,Chen L,et al.Shear wave splitting ineastern and central China:implications for upper mantledeformation beneath continental margin.Phys.Earth Planet.Int.,2007,162(1-2):73-84.
    [61]Chang L J,Wang C Y,Ding Z F.Seismic anisotropy ofupper mantle in eastern China.Sci.China(Ser D-EarthSci.),2009,52(6):774-783,doi:10.1007/s11430-009-0073-4.
    [62]Zhang Z J,Yuan X H,Chen Y,et al.Seismic signature ofthe collision between the east Tibetan escape flow and theSichuan Basin.Earth Planet.Sci.Lett.,2010,292(3-4):254-264.
    [63]Savage M K,Sheehan A F.Seismic anisotropy and mantleflow from the Great Basin to the Great Plains,westernUnited States.J.Geophys.Res.,2000,105(B6):13715-13734.
    [64]Karato S I,Jung H,Katayama I,et al.Geodynamicsignificance of seismic anisotropy of the upper mantle:newinsights from laboratory studies.Annu.Rev.Earth Plant.Sci.,2008,36:59-95.
    [65]Anderson D L.Theory of the Earth.Boston:BlackwellScientific Publication,1989.
    [66]Fouch M J,Rondenay S.Seismic anisotropy beneath stablecontinental interiors.Phys.Earth Planet.Int.,2006,158(2-4):292-320.
    [67]Park J,Levin V.Seismic anisotropy:Tracing plate dynamicsin the mantle.Science,2002,296(5567):485-489.
    [68]Wessel P,Smith W H F.New version of the GenericMapping Tools released.Eos Trans.AGU,1995,76:329.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心