日本南海海槽斜坡盆地重力流沉积特征及其对俯冲构造的响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
南海海槽是全球大地震发生频率最高的地区之一,该地区增生楔上斜坡盆地内的重力流沉积记录了多分支断层及大地震活动历史.利用国际综合大洋钻探计划(IODP)314-316航次岩心-地震-综合测井资料,在详细分析南海海槽增生楔上斜坡盆地内重力流沉积特征基础上,阐明了其对多分支断层和大地震活动的响应机制.研究结果表明,南海海槽增生楔上斜坡盆地内依次充填了楔形块体流、峡谷和表层块体流沉积:楔形块体流形成于多分支断层活动早期,表现出北厚南薄的楔形特征,反映了多分支断层的持续活动的特征,沉积物中富含的粗颗粒泥质角砾岩反映了早期多分支断层剧烈活动的特征;峡谷系统由密集峡谷,大型块体流和轴向峡谷组成,主要受到多分支断层耦合造成斜坡变陡、区域地层孔隙流体压力增大和盆地不均衡抬升的影响;表层块体流位于盆地顶部,由多期次弱振幅块体流叠加组成,现今海底表面表现为大量"马蹄形"的垮塌地形,这些相对短期内广泛分布的块体流应该是由地震引起的地表震动触发的.斜坡盆地内重力流沉积特征反映了多分支断层活动历史以及大地震的发生过程:即1.95~1.55Ma,多分支断层形成初期活动剧烈,逆冲活动造成了断层上盘沉积物垮塌,楔形块体流沉积在斜坡盆地底部;1.55~1.07Ma,多分支断层西部耦合,导致斜坡盆地出现东高西低的构造格局以及盆地西部区域楔体和断层处能量的集聚;1.07Ma至今,断层处能量间断释放,引发多次大地震.
Nankai trough is one of seismogenic zones known for massive earthquakes in the world.Gravity flow deposits in slope basin of Nankai trough accretionary prism record the active history of magesplay faults and the recurrences of great earthquakes.Based on the data of integrated ocean drilling program(IODP),this study explores the characteristics of gravity flow deposits in slope basin and illustrates their implications to the activities of magesplay faults and great earthquakes.The results show that the slope basin was filled successively with wedge-shaped mass transport deposits(MTDs),canyon system and superficial MTDs.Wedge-shaped MTDs developed in the initial stage of magesplay fault activity,which is wedge-shaped and mainly composed of muddy breccia,indicating continuous and strong activities of the magesplay faults at the initial stage.Canyon system consists of several kinds of canyons including slope canyons,great MTDs canyon and axial canyon,which are controlled by steepening slope,increasing regional interstitial fluid pressure and anisotropic uplifting.Superficial MTDs consist of stacking multi-stage low amplitude MTDs and represent as plenty of scars,which formed in a relatively short time,but extensively.It may be caused by the seafloor shaking during agreat earthquake.These characteristics of gravity flow deposits recordthe history of magesplay fault activities and recurrences of great earthquakes as follows:1.95-1.55 Ma,magesplay fault reactivated sharply at the initial stage which triggered slumps in the upper wall of magesplay fault;1.55-1.07 Ma,coupling and activities of magesplay fault in the west domain caused strata compressed,deformed and energy assembled in the prism as well as in the magesplay fault;1.07 Ma to now,energy in the mageplay fault was released discontinuously that resulted in multi great earthquakes.
引文
Bouma,A.H.,1962.Sedimentology of Some Flysch Deposits:A Graphic Approach to Facies Interpretation.Elsevier,Amsterdam,168.
    Bull,S.,Cartwright,J.,Huuse,M.,2009.A Review of Kinematic Indicators from Mass-Transport ComplexesUsing 3DSeismic Data.Marine and Petroleum Geology,26(7):1132-1151.doi:10.1016/j.marpetgeo.2008.09.011
    Cochonat,P.,Cadet,J.P.,Lallemant,S.J.,et al.,2002.Slope Instabilities and Gravity Processes in Fluid Migration and Tectonically Active Environment in theEastern Nankai Accretionary Wedge(KAIKO-Tokai96Cruise).Marine Geology,187(1):193-202.doi:10.1016/S002 5-3227(02)00266-9
    Fergusson,C.L.,2003.Provenance of Miocene-PleistoceneTurbidite Sands and Sandstones,Nankai Trough,OceanDrilling Program Leg 190.Proceedings of the OceanDrilling Program,Scientific Results,190(196):1-28.doi:10.2973/odp.proc.sr.190196.205.2003
    Hampton,M.A.,Lee,H.J.,Locat,J.,1996.SubmarineLandslides.Reviews of Geophysics,34(1):33-59.doi:10.1029/95RG03287
    Kimura,G.,Moore,G.F.,Strasser,M.,et al.,2011.Spatialand Temporal Evolution of the Megasplay Fault in theNankai Trough.Geochemistry,Geophysics,Geosystems,12(3):Q0A008.doi:10.1029/2010GC003335
    Kimura,G.,Screaton,E.J.,Curewitz,D.,et al.,2008.NanTroSEIZE Stage 1A:NanTroSEIZE Shallow Megasplay and Frontal Thrusts.IODP Prel.Rept.,316.doi:10.2204/iodp.pr.316.2008
    Lee,H.J.,Locat,J.,Desgagnés,P.,et al.,2007.SubmarineMass Movements on Continental Margins.In:Nittrouer,C.A.,Austin,J.A.,Field,M.E.,et al.,eds.,Continental Margin Sedimentation:From Sediment Transport to Sequence Stratigraphy,Int,Assoc.Sedimentol.,Gent,213-274.doi:10.1002/9781444304398.ch5
    Li,C.F.,Su,X.,Jiang,T.,et al.,2010.Deformation at theFront of the Accretionary Prism of the Nankai Trough,Japan:Evidence from Core Samples.Advances in EarthScience,25(2):203-211(in Chinese with English abstract).
    Locat,J.,Lee,H.J.,2002.Submarine Landslides:Advancesand Challenges.Canadian Geotechnical Journal,39(1):193-212.doi:10.1139/T01-089
    Lowe,D.R.,1982.Sediment Gravity Flows:II.DepositionalModels with Special Reference to the Deposits of HighDensity Turbidity Currents.Journal of SedimentaryResearch,52(1):279-297.
    Miyazaki,S.,Heki,K.,2001.Crustal Velocity Field ofSouthwest Japan:Subduction and Arc-Arc Collision.Journal of Geophysical Research,106(B3):4305-4326.doi:10.1029/2000JB900312
    Moore,G.F.,Bangs,N.L.,Taira,A.,et al.,2007.ThreeDimensional Splay Fault Geometry and Implications forTsunami Generation.Science,318(5853):1128-1131.doi:10.1126/science.1147195
    Moore,G.F.,Karig,D.E.,Shipley,T.H.,et al.,1991.Structural Framework of the ODP LEG 131Area,Nankai Trough.Proceedings of the Ocean Drilling Program,Initial Reports,131:15-20.doi:10.2973/odp.proc.ir.131.102.1991
    Moore,G.F.,Park,J.O.,Bangs,N.L.,et al.,2009.Structural and Seismic Stratigraphic Framework of theNanTroSEIZE Stage 1Transect.In:Kinoshita,M.,Tobin,H.,Ashi,J.,et al.,eds.,Proceedings of IOOP,Integrated Ocean Drilling Program Management International,Inc.,Texas,314-316:1-46.doi:10.2204/iodp.proc.314315316.102.200
    Moscardelli,L.,Hornbach,M.,Wood,L.,2010.Tsunamigenic Risks Associated with Mass Transport Complexesin Offshore Trinidad and Venezuela.Submarine MassMovements and Their Consequences.Advances in Natural and Technological Hazards Research,28:733-744.doi:10.1007/978-90-481-3071-9_59
    Mutti,E.,Ricci Lucchi,F.,1972.Le Torbiditi Dell'Appennino Settentrionale:Introduzione All'analisi Di Facies.Memorie della Societa Geologica Italiana,11(2):161-199.
    Omura,A.,Ikehara,K.,2010.Deep-Sea Sedimentation Controlled by Sea-Level Rise during the Last Deglaciation,an Example from the Kumano Trough,Japan.MarineGeology,274(1):177-186.doi:10.1016/j.margeo.2010.04.002
    Orange,D.L.,Breen,N.A.,1992.The Effects of Fluid Escape on Accretionary Wedges 2.Seepage Force,SlopeFailure,Headless Submarine Canyons,and Vents.Journal of Geophysical Research:Solid Earth,97(B6):9277-9295.doi:10.1029/92JB00460
    Palanques,A.,Martín,J.,Puig,P.,et al.,2006.Evidence ofSediment Gravity Flows Induced by Trawling in thePalamos(Fonera)Submarine Canyon(NorthwesternMediterranean).Deep Sea Research Part I:Oceanographic Research Papers,53(2):201-214.doi:10.1016/j.dsr.2005.10.003
    Park,J.,Moore,G.F.,Tsuru,T.,et al.,2004.A SubductedOceanic Ridge Influencing the Nankai MegathrustEarthquake Rupture.Earth and Planetary Science Letters,217(1):77-84.doi:10.1016/S0012-821X(03)00553-3
    Pettingill,H.S.,1998.Turbidite Giants-Lessons from theWorlds 40 Largest Turbidite Discoveries.EAGE/AAPG 3rd Research Symposium-Developing and Managing Turbidite Reservoirs,Almeria.
    Pickering,K.T.,Underwood,M.B.,Taira,A.,1992.OpenOcean to Trench Turbidity-Current Flow in the NankaiTrough:Flow Collapse and Reflection.Geology,20(12):1099-1102.doi:10.2973/odp.proc.sr.131.104.1993
    Puig,P.,Ogston,A.S.,Mullenbach,B.L.,et al.,2004.Storm-Induced Sediment Gravity Flows at the Head ofthe Eel Submarine Canyon,Northern California Margin.Journal of Geophysical Research:Oceans,109(C3):1-10.doi:10.1029/2003JC001918
    Ratzov,G.,Collot,J.,Sosson,M.,et al.,2010.MassTransport Deposits in the Northern Ecuador SubductionTrench:Result of Frontal Erosion over Multiple SeismicCycles.Earth and Planetary Science Letters,296(1):89-102.doi:10.1016/j.epsl.2010.04.048
    Sakaguchi,A.,Kimura,G.,Strasser,M.,et al.,2011.Episodic Seafloor Mud Brecciation due to Great SubductionZone Earthquakes.Geology,39(10):919-922.doi:10.1130/G32043.1
    Schnellmann,M.,Anselmetti,F.S.,Giardini,D.,et al.,2002.Prehistoric Earthquake History Revealed by Lacustrine Slump Deposits.Geology,30(12):1131-1134.doi:10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2
    Seno,T.,Stein,S.,Gripp,A.E.,1993.A Model for the Motion of the Philippine Sea Plate Consistent with NUVEL-1and Geological Data.Journal of GeophysicalResearch:Solid Earth,98(B10):17941-17948.doi:10.1029/93JB00782
    Shanmugam,G.,2000.50 Years of the Turbidite Paradigm(1950s—1990s):Deep-Water Processes and FaciesModels—A Critical Perspective.Marine and PetroleumGeology,17(2):285-342.doi:10.1016/S0264-8172(99)00011-2
    Shiki,T.,1996.Reading of the Trigger Records of Sedimentary Events—A Problem for Future Studies.Sedimentary Geology,104(1-4):249-255.doi:10.1016/0037-0738(95)00132-8
    Shiki,T.,Cita,M.B.,Gorsline,D.S.,2000.Sedimentary Features of Seismites,Seismo-Turbidites and Tsunamiites—AnIntroduction.Sedimentary Geology,135(1-4):7-9.doi:10.1016/s0037-0738(00)00058-0
    Shirai,M.,Omura,A.,Wakabayashi,T.,et al.,2010.Depositional Age and Triggering Event of Turbidites in theWestern Kumano Trough,Central Japan during theLast ca.100Years.Marine Geology,271(3-4):225-235.doi:10.1016/j.margeo.2010.02.015
    Stow,D.A.,Mayall,M.,2000.Deep-Water SedimentarySystems:New Models for the 21st Century.Marine andPetroleum Geology,17(2):125-135.doi:10.1016/S0264-8172(99)00064-1
    Stow,D.A.,Shanmugam,G.,1980.Sequence of Structures inFine-Grained Turbidites:Comparison of Recent Deep-Seaand Ancient Flysch Sediments.Sedimentary Geology,25(1-2):23-42.doi:10.1016/0037-0738(80)90052-4
    Strasser,M.,Moore,G.F.,Kimura,G.,et al.,2009.Originand Evolution of a Splay Fault in the Nankai Accretionary Wedge.Nature Geoscience,2(9):648-652.doi:10.1038/NGEO609
    Strasser,M.,Moore,G.F.,Kimura,G.,et al.,2011.Slumping and Mass Transport Deposition in the Nankai ForeArc:Evidence from IODP Drilling and 3-D ReflectionSeismic Data.Geochemistry,Geophysics,Geosystems,12(5):1-24.doi:10.1029/2010GC003431
    Sultan,N.,Cochonat,P.,Canals,M.,et al.,2004.Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins:A GeotechnicalApproach.Marine Geology,213(1-4):291-321.doi:10.1016/j.margeo.2004.10.011
    Underwood,M.B.,Moore,G.F.,Taira,A.,et al.,2003.Sedimentary and Tectonic Evolution of a Trench-SlopeBasin in the Nankai Subduction Zone of Southwest Japan.Journal of Sedimentary Research,73(4):589-602.doi:10.1306/092002730589
    Underwood,M.B.,Orr,R.,Pickering,K.T.,et al.,1993.Provenance and Dispersal Patterns of Sediments in theTurbidite Wedge of Nankai Trough.Proceedings of theOcean Drilling Program Leg131,131:15-34.doi:10.2973/odp.proc.sr.131.105.1993
    Walker,R.G.,1978.Deep-water Sandstone Facies andAncient Submarine Fans;Models for Exploration forStratigraphic Traps.AAPG Bulletin,62(6):932-966.
    Wang,K.,Hu,Y.,2006.Accretionary Prisms in SubductionEarthquake Cycles:The Theory of Dynamic CoulombWedge.Journal of Geophysical Research:Solid Earth,111,B06410.doi:10.1029/2005JB004094
    Xu,J.R.,Zhao,Z.X.,Kono,Y.,et al.,2003.Regional Characteristics of Stress Field and Its Dynamics in and around the Nankai Trough,Japan.Chinese Journal ofGeophysics,46(4):488-494(in Chinese with Englishabstract).
    李春峰,苏新,姜涛,等,2010.日本南海海槽俯冲增生楔前缘的构造变形特征.地球科学进展,25(2):203-211.
    徐纪人,赵志新,河野芳辉,等,2003.日本南海海槽地震区域应力场及其板块构造动力学特征.地球物理学报,46(4):488-494.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心