非一致激励下长距离输水隧道地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
近年长隧道结构震害频发,随着调水工程大规模建设,长距离输水隧道抗震性能的重要性愈加突出。在隧道传统抗震分析方法的基础上,针对非一致地震动作用下地基土-长距离输水隧道体系的地震响应问题,建立了非一致激励下长距离输水隧道的大规模地震响应分析方法,并以上海市某重点工程中的长距离输水隧道为工程应用,计算模型中不仅考虑了土体的动力滞回非线性、土体与隧道之间的接触非线性等因素,而且引入"附加质量法"来考虑地震作用下输水隧道内水体的动水压力作用。与一致激励的计算结果对比表明,非一致地震激励会显著增加输水隧道结构的内力和变形响应,从而对隧道抗震产生不利影响。研究结论可为长输水隧道结构的抗震设计和分析提供科学依据。
Long tunnels suffered great damages in recent earthquakes frequently. With the increasing of large amount of water conveying engineering under construction,the seismic performance of long-distance water-conveying tunnels is significant. Based on the deficiency of traditional method for large-scale seismic computation,a large-scale analysis method is proposed to solve the non-uniform seismic response problems of the complex soil-long tunnel-water system. As an application,the presented method is used in an existing long-distance water tunnel,which is one of the key projects in Shanghai. Both the nonlinear hysteretic constitutive model of soil and nonlinear contact behaviors between soil and tunnel are considered in the established numerical model. Furthermore,the added mass method is introduced to simplify the effect of dynamic water pressure on the tunnel liner when subjected to seismic loadings. Two seismic input modes,the uniform and non-uniform excitations,are involved in the seismic analyses of the long water tunnel system. Compared with the uniform seismic input,the results show that the non-uniform excitation can remarkably increase both stress and deformation responses of the long tunnel,which makes adverse influence on the seismic performance of the tunnel. The research conclusions are beneficial to proving theoretical criterions for seismic design and analysis of long water-conveying tunnels.
引文
[1]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [2]高波,王峥峥,袁松,等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341.
    [3]何建涛,马怀发,张伯艳,等.黏弹性人工边界地震动输入方法及实现[J].水利学报,2010,41(8):960-969.
    [4]Ding J H,Jin X L,Guo Y Z,et al.Numerical simulation for large-scale seismic response analysis of immersed tunne[lJ].Engineering Structures,2006,28:1367-1377.
    [5]Anastasopoulos I,Gerolymos N,Drosos V,et al.Nonlinear response of deep immersed tunnel to strong seismic shaking[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2007,133(9):1067-1090.
    [6]丁俊宏,金先龙,郭毅之,等.盾构隧道地震响应的三维数值模拟方法及应用[J].岩石力学与工程学报,2006,25(7):1430-1436.
    [7]禹海涛.软土盾构隧道多尺度仿真方法及大规模地震响应分析[D].上海:同济大学,2011.
    [8]Papadrakakis M.A method for the automated evaluation of the dynamic relaxation parameters[J].Computer Methods in Applied Mechanics and Engineering,1981,25:35-48.
    [9]Hallquist J O.LS-DYNA Theoretical Manua[lR].Livermore Software Technology Corporation:Livermore,1998.
    [10]涂劲,李德玉,陈厚群,等.大岗山拱坝-地基体系整体抗震安全性研究[J].水利学报,2011,42(2):152-159.
    [11]Housner G W.Earthquake Pressures on Fluid Containers California Institute of Technology[M].Pasadena,Cali fornia,1954.
    [12]Yu H T,Yuan Y,Bobet A.Multi-scale method for long tunnels subjected to seismic loading[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011.DOI:10.1002/nag.1102
    [13]Peck R B,Hendron A J,Mohraz B.State of the art of soft-ground tunneling[C]//Proceedings of the North Ameri can Rapid Excavation and Tunneling Conference,Society of Mining Engineers of the American Institute of Min ing,Metallurgical,and Petroleum Engineers.Chicago,1972:259-286.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心