芦山地震重灾区崩塌滑坡易发性评价
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2013-04-20 T08:02,四川省芦山县发生7.0级大地震,地震诱发了大量的次生山地灾害。在芦山、宝兴、天全三个地震重灾县6 651.35 km2的区域内,采用震后遥感影像解译并结合野外调查的方法,共解译出1 379处崩塌(含落石)滑坡。应用GIS技术,建立了芦山地震诱发崩塌滑坡灾害及相关地形、地质空间数据库,分析了岩性、断层、地震动加速度、高程、坡度等5个因素与崩塌滑坡分布的关系,应用崩塌滑坡数量百分比这一标准来分别衡量每个因素中各个级别对崩塌滑坡的影响程度;然后使用层次分析法对这5个参数进行权重分析;在GIS平台下对这些参数进行综合分析,以此将研究区内的崩塌滑坡按易发程度分为极高易发区、高易发区、中易发区、低易发区4类,极高易发区与高易发区面积约2 149.89 km2,占研究区总面积的32.32%。
On 20 April 2013,a catastrophic Ms 7.0 earthquake struck Lushan,Ya'an,Sichuan Province of China.A great number of secondary mountain disasters whose main types include rockfall,landslide,rolling stone,dammed lake etc.had been induced by the earthquake.Not merely did these secondary disasters result in heavy casualties but also blocked road for rescue service,which retarded the relieving progress.1 379 and landslides rockfall were interpreted from aerial photographs and multi-source remote sensing imageries,verified by field check.A spatial database,including rockfall(landslide) and associated controlling parameters which may have influence on the occurrence of rockfall(landslide),was developed and analyzed using geographical information system(GIS) technology.The correlations of rockfall(landslide) distribution with controlling parameters,including faults,lithology,elevation,slope angle,PGA were firstly analyzed,and landslide number-ratio was calculated for each group of the above parameters.An analytical hierarchy process(AHP) was then applied to determine the significance of controlling parameters in triggering the rockfall(landslide) The resulting susceptibility map showed five classes of rockfall(landslide) susceptibility,i.e.extremely high,high,moderate,low.The area with extremely high and high susceptibility accounts for about 2 149.89 km2,32.32% of the study area.
引文
[1]China Earthquake,Administration.The 20 April Lushan earthquake.[EB/OL]http://www.cea.gov.cn/publish/dizhenj/468/553/100342/index.html,2013-4-20[中国地震局.“4·20”芦山地震专题报道[EB/OL].http://www.cea.gov.cn/publish/dizhenj/468/553/100342/index.html,2013-4-20]
    [2]China Earthquake Administration.Lushan earthquake field emergency team of China Earthquake Administration complete the seismic tectonic environment and seismogenic structure analysis[EB/OL].http://www.cea.gov.cn/publish/dizhenj/468/553/100342/100347/20130427174324060108454/index.html,2013-04-27[中国地震局.中国地震局地震现场应急队完成震区地震构造环境与发震构造分析[EB/OL].http://www.cea.gov.cn/publish/dizhenj/468/553/100342/100347/20130427174324060108454/index.html,2013-04-27]
    [3]Cui Peng,He Siming,Yao Lingkan,et al.Formation mechanism and risk control of mountain hazards induced by Wenchuan earthquake[M].Beijing:Science Press,2011[崔鹏,何思明,姚令侃,等.汶川地震山地灾害形成机理与风险控制[M].北京:科学出版社,2011.]
    [4]Cui Peng,Chen Xiaoqing,Zhang Jianqiang,et al.Activities and tendency of mountain hazard induced by the Ms 7.0 Lushan earthquake,April 20,2013[J].Journal of Mountain cience,2013,31(3):257-265[崔鹏,陈晓清,张建强,等.“4.20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,31(3):257-265]
    [5]Zhao John X.,Jian Zhang,Akihiro Asano et al.Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J].Bulletin of the seismological society of America,2006,96(3):898-913
    [6]Patrick Meunier,Niels Hovius,John Allan Haines.Topographic site effects and the location of earthquake induced landslides.Earth and Planetary Science Letters,2008,275(3-4):221-232

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心