“4.20”芦山地震前后宝兴冷木沟泥石流物源特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究区受"5.12"汶川地震、"8.18"泥石流、"4.20"芦山地震等大型地质灾害叠加作用的影响,区域上构成独特的工程地质环境条件.通过系统调研和收集宝兴冷木沟地震前后泥石流物源地质原型和泥石流灾害防治的第一手资料,重点查清泥石流形成的物源条件,对比研究"4.20"芦山地震前后泥石流物源特征、动/静储量比例.分析研究结果表明冷木沟发育点状物源、线状物源、面状物源,其中震前震后均以沟床侵蚀物源(线状物源)为主,占76.110%和60.690%."4.20"芦山地震后,沟岸堆积物源(点状物源)却成倍增多,为48的倍率,超31.490个百分点.整体上,除沟岸侧蚀物源(面状物源)外,同一流域段内,震后物源动储量高于震前.静动储量线性关系较为明显,相关系数R2达0.8~1.0,均属高度正相关.
"5. 12"Wenchuan earthquake,"8. 18"debris flow,"4. 20"Lushan earthquake and other large- scale geological disasters made additive effects on the study area,and constituted a unique engineering geological environmental condition. Through systematically investigate and collect geological prototype research of the debris flow material source before and after Lengmugou earthquake,Baoxing country and first- hand information of debris flow disaster prevention and control,the point research of the source condition of debris flow and comparative research before and after the " 4. 20 " Lushan earthquake debris flow material source characteristics,dynamic and static material source reserve ratio,according to material source is one of the three conditions formed debris flow. The analysis results indicate that Lengmugou point material source,line material source and surface material source has well- developed,but the major is gully erosion source material( line material source),reaches 76. 110% and 60. 690% before and after earthquake. After Lushan earthquake,during the accumulation material source in shore ditch( point material source) increased exponentially,ratio of48,by more than 31. 490%. In addition to ditch shore erosion source material source( surface material source),dynamic reserves than before the earthquake source in the same watershed section. Static and dynamic material source reserves of linear relationship is relatively obvious,the correlation coefficient( R2) of 0. 8 ~ 1. 0,are positively related,and is highly relevant.
引文
[1]许强.四川省8·13特大泥石流灾害特点、成因与启示[J].工程地质学报,2010,18(5):596-608.
    [2]Sasse K T.The mechanism starting liquefied landslides and debris flows[C]//Proceedings of 4th International Symposium on Landslides.Rotterdam:A A Baikema,1984.
    [3]倪化勇,郑万模,唐业旗,等.汶川震区文家沟泥石流成灾机理与特征[J].工程地质学报,2011(2):262-270.
    [4]Blackwelder E.Mudflows as a geologic agent in semiarid mountains[J].Geological Society of America Bulletin,1928:465-487.
    [5]Hungr O.Analysis of debris flow surges using the theory of uniformly progressive flow[J].Earth Surface Processes and Landforms,2000,25(5):483-495.
    [6]Iverson M,Rcosta E J,Lahusen G R.Large-scale debris flow flume becomes operational in Oregon,USA[J].Landslide News,1993(7):29-30.
    [7]唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报,2010,28(13):341-349.
    [8]崔鹏,韦方强,何思明,等.5.12汶川地震诱发的山地灾害及减灾措施[J].山地学报,2010,26(3):280-282.
    [9]周必凡,李德基,罗德福,等.泥石流松散固体物质储量[M].北京:科学出版社,1991.
    [10]乔建平,黄栋,杨宗佶,等.汶川地震极震区泥石流物源动储量统计方法讨论[J].中国地质灾害与防治学报,2012,23(2):1-6.
    [11]唐邦兴,周必凡,吴积善,等.中国泥石流[M].北京:商务印书馆,2000.
    [12]Iverson R M.The physics of debris flows[J].Reviews of Geophysics,1997,35(3):245-296.
    [13]Tognacca C,Bezzola G R,Minor H E.Threshold criterion for debris-flow initiation due to channel bed failure[C]//Proceeding 2nd International Confences on Debris Flow Hazards Mitigation.New York:American Society of Civil Engineers,2000.
    [14]Berti M,Simoni A M.Experimental evidences and numerical modeling of debris flows initiated by channel runoff[J].Landslides,2005(2):171-182.
    [15]冯自立,崔鹏,何思明.滑坡转化为泥石流机理研究综述[J].自然灾害学报,2005,14(3):8-14.
    [16]地质工程公司.宝兴县城周围地质灾害(冷木沟“8.18”泥石流)治理工程补充勘查报告[R].成都:四川省地质工程勘察院,2012.
    [17]曹运江.含软岩高边坡稳定性的系统工程地质研究—以岷江紫坪铺水利枢纽工程为例[D].成都:成都理工大学,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心