塔河油田奥陶系古洞穴垮塌体地震反射结构与识别
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
塔里木盆地北部塔河奥陶系碳酸盐岩油藏以大型古岩溶洞穴为主要储集空间,由于岩溶、构造和上覆地层负载等作用,发育大量与古洞穴塌陷有关的独特储集体。本文在碳酸盐岩古洞穴联合垮塌体理论基础上,建立古洞穴塌陷单体地质和地震参数模型,地震物理参数以塔河油田石炭系和奥陶系钻井岩心岩石样品的波速和密度测试数据为基础。利用波动方程理论,对塌陷地质体进行地震正演模拟。通过不同子波主频的地震反射结构分析,认为该类储集体呈顶部"下凹"地震结构,随着主频增加,塌陷体具明显"串珠"状和"杂乱"地震反射特征。通过与实际三维高分辨率地震资料对比,认为岩溶塌陷储集体识别依据为:上覆地层下凹、地震杂乱强反射结构、与断裂与古暗河伴生等。
The reservoir space of the Ordovician carbonate in the Tahe oilfield of north Tarim was found to consist mainly of large collapsed paleocaves formed by supergene karstification, tectonic activity,and loading effects of overlying strata.In this thesis,the seismic physical model and parameters of the collapsed paleocave have been established based on the hypothesis of ancient coalesced collapsed paleocave reservoirs.The seismic physical parameters based on rock wave velocity and density of drilling core in the Carboniferous and the Ordovician in Tahe oilfield.The characterization of paleocave composition in different dominant frequency was investigated by means of the forward seismic physics modeling technique.The seismic reflection structure of the collapsed paleocave reservoir appeared to sag downward.With the frequency increase of forward modeling,it also had characteristics of seismic reflection,which both showed string beads and chaos features. Comparison with the practical 3D high resolution seismic data,ascertain that the Identification process for karst collapse includes sag of overlying strata,seismic reflection structure of chaos features,near to rivers fracture and the ancient.
引文
[1]康玉柱.中国古生代碳酸盐岩古岩溶储集特征与油气分布[J].天然气工业,2008,28(6):5-8.
    [2]牛玉静,康志宏,龙旭,等.塔河油田奥陶系岩溶油藏溶洞储集体成因及演化[J].现代地质,2011,25(4):651-654.
    [3]康志宏.塔河碳酸盐岩油藏岩溶古地貌研究[J].新疆石油地质,27(5):522-525.
    [4]鲁新便,蔡忠贤.缝洞型碳酸盐岩油藏古溶洞系统与油气开发-以塔河碳酸盐岩溶洞型油藏为例[J].石油与天然气地质,2010,31(1):23-26.
    [5]金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.
    [6]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,15(1):36-50.
    [7]许效松,杜佰伟.碳酸盐岩地区古风化壳岩溶储层[J].沉积与特提斯地质,2005,25(3):1-7.
    [8]Dravis J J,Muir I D.Deep-burial brecciation in the Devonian Upper Elk Point Group,Rainbow Basin,Alberta,Western Canada[A].In:Fritz R D,Wilson J L,Yurewicz D A,(eds)Paleokarst related hydrocarbon reservoir[M].SEPM Core Workshop 18:pp119-167.
    [9]王拥军,张宝民,董月霞,等.南堡凹陷奥陶系潜山岩溶塌陷体识别储层特征及油气勘探前景[J].石油学报,2010,33(4):570-580.
    [10]Lucia F J.Petrophysical parameters estimated from visual description of carbonate rocks:A field classification of carbonate pore space[J].Journal of Petroleum Technology,1983,35(3):626-637.
    [11]Lucia F J.Rock fabric/petrophysical classification of carbonate pore space for reservoir characterization[J].AAPG Bulletin,1993,79(9):1275-1300.
    [12]Loucks R G,Handford C R.Origin and recognition of fractures,breccias,and sediment fills in paleocave-reservoir networks[A],in M.P.Candelaria and C.L.Reed.Paleokarst,karst related diagenesis and reservoir development:Examples from OrdovicianDevonian age strata of west Texas and the mid-continent[M],Permian Basin Section SEPM Publication No.92:31-44.
    [13]Lucia F J.Lower Paleozoic cavern development,collapse and dolomitization,Franklin Mountains,El Paso,Texas[A],In D.A.Budd,A.H.Saller,P.M.Harris,eds.,Unconformities and porosity in carbonate strata[M],AAPG Memoir,1995,63(4):279-300.
    [14]Kerans C.Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of west Texas[J],AAPG Bulletin,1988,72(4):1160-1183.
    [15]Hardage B A,Carr D L,Lancaster D E.3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization[J],GEOPHYSICS,1996,61(5):1336-1350.
    [16]Handford C.R.,Modern cave systems as analogs for paleokarst reservoirs:Part 1-Origin,geometry,and facies of modern systems;Part 2-Insights from seismic modeling[J].AAPG Bulletin,1992,77(5),1258-1263.
    [17]Loucks R G.Paleocave Carbonate Reservoirs:Origins,BurialDepth Modifications,Spatial Complexity,and Reservoir Implications[J],AAPG Bulletin,1999,83(11):1795-1834.
    [18]Loucks R G,Mescher P K,George A M.Three-dimensional architecture of a coalesced,collapsed paleocave system in the Lower Ordovician Ellenburger Group,central Texas[J].AAPG Bulletin,2004,88(5):545-564.
    [19]Alden J M,Stephen T S,Dan J H.,Characterization of petrophysical flow units in carbonate reservoir[J].AAPG Bulletin.1997,81(5):731-759.
    [20]Hongliu Z,Loucks R G,Xavier J.Three-dimensional seismic geomorphology and analysis of the Ordovician paleokarst drainage system in the central Tabei Uplift,northern Tarim Basin,western China[J].AAPG Bulletin,2011,95(12):2061-2083.
    [21]Ford D C.Characteristics of dissolutional cave systems in carbonate rocks[A],In N.P.James and P.W.Choquette,eds.,Paleokarst[M]:Berlin,Springer-Verlag,1988:pp 25-57.
    [22]White W B.Geomorphology,hydrology of karst terrains[M],New York,University Press,1988,pp 464.
    [23]Ford D C,Williams P W.Karst geomorphology and hydrology[M],London,Unwin Hyman,1989,pp 601.
    [24]Palmer A N.Origin and morphology of limestone caves[J],Geo logical Society of America Bulletin,1991,103(3):1-21.
    [25]Palmer A N.Geochemical models for the origin of macroscopic solution porosity in carbonate rocks[M].In:D.A.Budd,A.H.Saller,and P.M.Harris,eds.,Unconformities and porosity in carbonate strata[A],AAPG Memoir,1995,63:77-102.
    [26]White W B,Culver D C,Herman J S,et al.Karst lands[J].American Scientist,1995,83:450-459.
    [27]Bleahu M.Paleokarst of Romania[A],In P.Bosak,D.C.Ford,and J.I.Horacek,eds.Paleokarst:a systematic and regional review[M].Amsterdam,Elsevier,1989,pp 231-251.
    [28]Hovorka S D,R E Mace.Interplay of karst,fractures,and permeability in the Cretaceous Edwards aquifer:analogs for fractured carbonate reservoirs:Geological Field Trip,Society of Petroleum Engineers 1997 Annual Technical Conference and Exhibition,p.35.
    [29]Entzminger D J,Loucks R G.Paleocave reservoirs in the Wristen Formation at Emerald field,Gaines-Yoakum counties,Texas,in M P Candelaria and C L,eds.Paleokarst,karst related diagenesis and reservoir development:examples from Ordovician-Devonian age strata of west Texas and the mid-continent:Permian Basin Sec tion,SEPM Publication,1992,92-33,pp 126-130.
    [30]Hammes U.Electrical imaging catalog:microresistivity images and core photos from fractured,karsted,and brecciated carbonate rocks[J].The University of Texas at Austin,Bureau of Economic Geology,Geological Circular,1997,97(2):40.
    [31]Mcmechan G A,Loucks R G,Mescher P,et al.Characterization of a coalesced,collapsed paleocave reservoir analog using GPR and well-core data[J].GEOPHYSICS,2002,67(4):1148-1158.
    [32]陈琳,康志宏,李鹏,等.岩溶型碳酸盐岩油藏储集空间发育特征及地质模式探讨[J].现代地质,2013,27(2):356-265.
    [33]刘之的,苗福全,候庆宇,等.塔河油田五区奥陶系碳酸盐岩岩溶地层测井响应特征[J].地球物理学进展,2013,289(6):1483-1489.
    [34]J Virieux.SH-wave propagation in heterogeneous media velocitystress finite dierence method[J].Geophysics,1984,49(11):1933-1942.
    [35]J Virieux.P-SV wave propagation in heterogeneous media-velocity-stress finite-di-erence method[J].Geophysics,1986,51(4):889-901.
    [36]康志宏,陈琳,鲁新便,等.塔河岩溶型碳酸盐岩缝洞系统流体动态连通性研究[J].地学前缘,2012,19(2):110-120.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心