地震各向异性流体检测技术在胜利油田垦71井区的应用(英文)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据Chapman理论模型,在各向异性介质(如HTI介质)中,当入射角在0-45。范围内,慢横波会发生较大的衰减和频散,且对流体粘度敏感,而P波和快横波则比较小。对于沿裂隙法向传播的慢横波,其振幅受流体影响很大。因此,在P波响应对流体不敏感的情况下,可利用慢横波来获得裂隙型油气藏的流体信息。本文分析了胜利油田垦71地区三维三分量地震数据,检测出的慢横波振幅和旅行时异常与该区的测井资料十分吻合。分析结果还发现,与含油区相比,含水区会产生更高的横波分裂。在含水区,慢横波振幅会产生明显变化,而在含油区则几乎没有变化。
On the basis of Chapman's(2003) model,as the seismic wave incidences angles vary from 0° to 45° while propagating in anisotropic media(HTI),the slow S-wave will sufferred by serious attenuation and dispersion and is sensitive to fluid viscosity but the P-and fast S-waves don't.For slow S waves propagating normal to fractures,the amplitudes are strongly affected by pore fluid.So,the slow S-wave can be used to detect fractured reservoir fluid information when the P-wave response is insensitive to the fluid.In this paper,3D3C seismic data from the Ken 71 area of Shengli Oilfield are processed and analyzed.The travel time and amplitude anomalies of slow S-waves are detected and correlated with well log data.The S-wave splitting in a water-bearing zone is higher than in an oil-bearing zone.Thus,the slow S-wave amplitude change is more significant in water-bearing zones than in oil-bearing zones.
引文
Angerer,E.,Crampin,S.,Li,X.Y.,and Davis,T. L.,2002,Processing,modeling and predicting time-lapse effects of overpressured uid-injection in a fractured reservoir: Geophysical Journal International,149,267 - 280.
    Batzle,M.,Han,D. H.,and Hofmann,R.,2006,Fluid mobility and frequency-dependent seismic velocity - direct measurements: Geophysics,71,N1 - N9.
    Chapman,M.,Maultzsch,S.,Liu,E.,and Li,X. Y.,2003,The effect of uid saturation in an anisotropic multi-scale equant porosity model: Journal of Applied Geophysics,54,191 - 202.
    Chapman,M.,2003,Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity: Geophysical Prospecting,51,369 - 379.
    Gassmann,F.,1951,Uber die Elastizitat poroser Medien: Vierteljahrsschrift der Naturforschenden Gesellschaft,96,1 - 23.
    Li, X. Y., 1998, Processing PP and PS waves in multicomponent sea-floor data for azimuthal anisotropy:theory and review: Processing 8th International Workshop on Seismic Anisotropy,53,607 - 610.
    Liu,E.,Queen,J. H.,Li,X. Y.,Chapman,M.,Maultzsch,S.,Lynn,H. B.,and Chesnokov,E. M.,2003,Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont Field,Utah: Journal of Applied Geophysics,54,319 - 333.
    Maultzsch,S.,Chapman,M.,Liu,E.,and Li,X. Y.,2003,Modeling frequency-dependent seismic anisotropy in uid-saturated rock with aligned fractures: implications of fracture size estimation from anisotropic measurements: Geophysical Prospecting,51,381 - 392.
    Schoenberg,M.,and Douma,J.,1988,Elastic-wave propagation in media with parallel fractures and aligned cracks: Geophysical Prospecting,36,571-590.
    Thomsen,L.,1995,Elastic anisotropy due to aligned cracks in porous rock: Geophysical Prospecting,43,805 - 829.
    Thomsen,L.,2002,Understanding seismic anisotropy in exploration and exploitation: SEG Distinguished Instructor Series,No. 5.
    Yuan,J.,2001,Analysis of four-component sea-floor seismic data for seismic anisotropy: PhD Thesis,University of Edinburgh.
    Zatsepin,S. V.,and Crampin,S.,1997,Modeling the compliance of crustal rock—I. Response of S-wave splitting to differential stress: Geophysical Journal International,129,477 - 494.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心