考虑流固耦合的桥墩地震反应方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
跨海桥梁地震反应中,作用于桥墩上的动水压力具有明显的流固耦合特征。依据张量理论,推导时变区域散度变换关系及微分形式的几何守恒律;基于任意拉格朗日-欧拉描述,从采用欧拉描述的流体运动Navier-Stokes方程出发,推导时变区域的流体运动控制方程;给出流固耦合问题中的结构计算模型、耦合面接触条件、耦合场计算方法以及流场网格运动控制方法。以某跨海大桥为例说明桥墩地震反应方法,重点突出地震动输入、流场初始条件模拟等问题。计算结果表明:流固耦合理论能够模拟桥梁墩台地震反应中的流场和结构特性;流场初始条件的正确模拟可保证计算稳定性,并减少运算量;横向地震动激励下,桥墩基底剪力较大,纵向地震动激励下,结构运动剧烈;流固耦合系统中的线弹性结构在地震反应中具有明显的非线性特征。
In seismic response of a sea-spanning bridge,dynamic pressure of fluid on bridge piers shows clear fluid-structure interaction.Based on the tensor theory,divergence transform relation in time depen-dent domain and spatial conversation principle in differential form are set up.With the arbitrary Lagrange-Euler description,governing equations of fluid motion in time dependent domain are built up from Navier-Stokes equations in Euler description which govern the fluid motion.Structural computing model,contact condition in fluid-structure interface,computing method of coupling field and controlling of fluid domain mesh motion are carefully presented in this paper.Then a sea-spanning bridge is taken as an example for dynamic analysis of its piers.In the analysis,the input ground motion and the initial conditions in fluid domain are explained in detail.Simulation results show that the fluid-structure interaction theory can simu-late the characteristic feature of fluid and structure in seismic response of bridge piers.The proper initial conditions in fluid domain insure the stability of numerical computation and reduce the computational complexity.Shear force on the bottom of bridge piers is dominant under transversal earthquake excitation and displacement of structure is significant under longitudinal earthquake excitation.A structure with the linear elastic model in the fluid-structure system has a clear nonlinear feature in its seismic response.
引文
[1]王志华,席仁强,陈国兴.考虑流固耦合的桥梁桩基地震反应研究现状[J].南京工业大学学报(自然科学版),2009,31(1):106-112.Wang Z H,Xi R Q,Chen G X.State of arts on dy-namic response of bridge pile foundation under earth-quake excitation[J].Journal of Nanjing University ofTechnology(Natural Science Edition),2009,31(1):106-112.
    [2]Hron J,Mádlík M.Fluid-structure interaction withapplications in biomechanics[J].Nonlinear Analysis:Real World Applications,2007,(8):1431-1458.
    [3]Relvas A,Suleman A.Fluid-structure interactionmodeling of nonlinear aero-elastic structures using thefinite element co-rotational theory[J].Journal ofFluids and Structures,2006,(22):59-75.
    [4]Vierendeels J,Dumont K,Verdonck P R.A parti-tioned strongly coupled fluid-structure interactionmethod to model heart valve dynamics[J].Journal ofComputational and Applied Mathematics,2008,(215):602-609.
    [5]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2006.Huang K Z,Xue M D,Lu M W.Tensor Analysis[M].Beijing:Tsinghua University Press,2006.
    [6]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2003.Huang Z P.Fundamental of Continuum Mechanics[M].Beijing:Higher Education Press,2003.
    [7]Zhang A N,Katsuyuki Suzuki.A comparative studyof numerical simulations for fluid-structure interactionof liquid-filled tank during ship collision[J].OceanEngineering,2007,(34):645-652.
    [8]孙晓颖.薄膜结构风振响应中的流固耦合效应研究[D].哈尔滨:哈尔滨工业大学,2007.Sun X Y.Study on wind-structure interaction inwind-induced vibration of membrane structure[D].Harbin:Harbin Institute of Technology,2007.
    [9]Oliver K H,Hermann G M.Least squares finite ele-ment methods for fluid-structure interaction problems[J].Computers and Structures,2005,(83):191-207.
    [10]Sigrist J F,Garreau S.Dynamic analysis of fluid-structure interaction problems with modal methodsusing pressure-based fluid finite elements[J].FiniteElements in Analysis and Design,2007,(43):287-300.
    [11]Chen B F.3D nonlinear hydrodynamic analysis ofvertical cylinder during earthquakes:rigid motion[J].Journal of Engineering Mechanics,1997,123(5):458-465.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心