震后松弛过程的粘弹性模型在1997年Mw7.6玛尼地震中的应用研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用麦克斯韦体模型、标准线性体模型和伯格斯体模型,具体研究了1997年玛尼地震在衰减时间1~100 a间的震后位移场和库仑应力场。结果表明:①在1~5 a的短期内,采用标准线性体和伯格斯体模型的震后位移场具有时空上的一致性;而在10 a以上的中长期内,麦克斯韦单元开始起主要作用,表现为采用麦克斯韦体和伯格斯体模型的震后位移场具有时空上的一致性。②虽然应力阴影区和应力触发区随时间而同步扩展,但短期内,采用标准线性体和伯格斯体模型的粘弹性库仑应力场的空间结构具有一致性;而中长期内,采用麦克斯韦体和伯格斯体模型的粘弹性库仑应力场的空间结构具有一致性。为更好地解释震后形变及粘弹性库仑应力触发响应,流变模型的选择需要根据研究的时间段和观测数据源具体确定。
To quantitatively assess the differences born from rheological models on postseismic displacements and viscoelastic Coulomb stress changes,for 1997 Manyi earthquake after decay time from 1 year to 100 years when employing three linear rheological models,namely,Maxwellian model,standard linearsolid model,and Burges model.The results show that:① During transient phase,from 1 to 5 years after Manyi event,standard linearsolid model and Burges model are nearly the same as the other two ones.While during the later phase,starting from 10 years later,Maxwell element does and so are those with Maxwellian model and Burges one.② Similar is their influence on spatial pattern of viscoelastic Coulomb stress changes,though stress shadows and stress-triggering zones enlarge with time.Such tempo-spatial patterns of postseismic displacement field and viscoelastic Coulomb stress changes are consistent with the point that Burges rheological model is general compared with the other two.The uniqueness of rheological model should be figured out by a case-to-case study involving some kind of recursive determination of rhological model through multiple data sources such as GPS,InSAR,levelling,and those measured at different time-intervals so as to explain kinemics of displacement because of postseismic relaxation.
引文
[1]Piersanti A,Spada G,Sabadini R,et al.GlobalPost-seismic Deformation[J].Geophysical JournalInternational,1995,120:544-566
    [2]Freed A M,Ali S T,Burgmann R.Evolution ofStress in Southern California for the Past 200 Yearsfrom Coseismic,Postseismic and Interseismic StressChanges[J].Geophysical Journal International,2007,169:1 164-1 179
    [3]Freed A M,Burgmann R.Evidence of Power-lawFlow in the Mojave Desert Mantle[J].Nature,2004,430:548-551
    [4]Piersanti A,Spada G,Sabadini G.Global Postseis-mic Rebound of a Viscoelastic Earth:Theory for Fi-nite Faults and Application to the 1964 AlaskaEarthquake[J].Journal Geophysical Research,1997,102(B1):447-492
    [5]Pollitz F,Peltzer G,Burgmann R.Mobility of Con-tinental Mantle:Evidence from Postseismic Geodet-ic Observations Following the 1992 Landers Earth-quake[J].Journal Geophysical Research,2000,105:8 035-8 054
    [6]Pollitz F,Burgmann R,Banerjee P.Post-seismicRelaxation Following the Great 2004 Sumatra-An-daman Earthquake on a Compressible Self-gravita-ting Earth[J].Geophysical Journal International,2006,167(1):397-420
    [7]Tamisiea M E,Mitrovica J X,Davis J L.GraceGravity Data Constrain Ancient Ice Geometries andContinental Dynamics over Laurentia[J].Science,2007,316(5 826):881-883
    [8]Hammond W C,Kreemer C,Blewitt G.GeodeticConstraints on Contemporary Deformation in theNorthern Walker Lane:3,Central Nevada SeismicBelt Postseismic Relaxation[C]/Oldow J,CashmanP.Late Cenozoic Structure and Evolution of theGreat Basin.Sierra Nevada Transition:Geol SocAm Bull,2007
    [9]Hetland E A,Hager B H.Postseismic and Inter-seismic Displacements Near a Strike-slip Fault:aTwo-dimensional Theory for General Linear Viscoe-lastic Rheologies[J].Journal Geophysical Research,2005,110:B10401
    [10]Peltier W R.The Impulse Response of a MaxwellEarth[J].Rev Geophys Space Phys,1974,12(4):649-669
    [11]Pollitz F.Transient Rheology of the UppermostMantle Beneath the Mojave Desert,California[J].Earth Planet Sci Lett,2003,215:89-104
    [12]Smith B,Sandwell D.A Three-dimensional Semi-analytical Viscoelastic Model for Time DependentAnalysis of the Earthquake Cycle[J].Journal Geo-physical Research,2004,109:B12401
    [13]Carrol D.Chemical Laser Modeling with GeneticAlgorithm[J].AIAAJ,1996,34(2):338-346
    [14]Funning G,Parsons B.Wright T.Fault Slip in the1997 Manyi,Tibet Earthquake from Linear ElasticModeling of the InSAR Displacement[J].Geophysi-cal Journal International,2007,169:998-1 008
    [15]Dziewonski A,Anderson D.Preliminary ReferenceEarth Model[J].Phys Earth Planet Inter,1981,25:297-356
    [16]沈正康,万永革,甘卫军,等.东昆仑活动断裂带大地震之间的粘弹性应力触发研究[J].地球物理学报,2003,46(6):787-795
    [17]Stein R,King G,Lin J.Change in Failure Stress onthe Southern San Andreas Fault System Caused bythe 1992 Magnitude=7.4 Landers Earthquake[J].Science,1949,258(1):1 328-1 332
    [18]Parson T,Toda S,Stein S,et al.Heightened Oddsof Large Earthquake Near Lstanbul:an Interaction-based Probability Calculation[J].Science,1979,288:661-665

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心