空气气氛中滑石的热分解动力学实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
含水矿物的热分解动力学研究对于了解俯冲带中-深源地震的成因机制具有重要意义.本文用综合热分析仪(TG-DSC)研究滑石在动态空气气氛下的热分解过程,利用热重(TG)数据对滑石的热分解动力学进行分析.利用Friedman法和FWO法,分别计算滑石热分解过程中的表观活化能Ea和指前因子A,并以Friedman法求得的活化能为初始值,通过非线性回归拟合得到热分解过程最可能的反应机理和动力学参数.研究结果表明,滑石在830~1 050℃内发生热分解,此过程为n级反应,表观活化能Ea为344.2 k J/mol,指前因子A为4.9E12 s-1.
Study on thermal decomposition kinetics of hydrous minerals is important to the exploration of the formation mechanisms of intermediate-deep earthquakes occurred in subduction zone. In the present work thermal decomposition of talc was studied by using thermogravimetric( TG) techniques under the condition of dynamical air atmosphere. The model-free methods including Friedman and FWO were employed to determine the activation energy( Ea) and the preexponential factor( A). Based on the initial values derived from Friedman method,the most probable kinetic model of the dehydration reaction was obtained by using the multivariate non-linear regression approach. The results showed that talc decomposed in the temperature range of 830 ~1 050℃ and the most probable kinetic model could be expressed as f( α) =( 1- α)nand G( α) =( 1-( 1- α)( 1-n)) /( 1- n),with the derived values of 1. 7,344. 2 k J/mol,and 4. 9E12 s- 1for n,Ea,and A,respectively.
引文
[1]Frohlich C.The nature of deep-focus earthquakes[J].Annual Review of Earth and Planetary Sciences,1989,17:227.
    [2]Green H W,Houston H.The mechanics of deep earthquakes[J].Annual Review of Earth and Planetary Sciences,1995,23:169-214.
    [3]Hasegawa A,Umino N,Takagi A.Double‐planed deep seismic zone and upper‐mantle structure in the Northeastern Japan Arc[J].Geophysical Journal of the Royal Astronomical Society,1978,54(2):281-296.
    [4]Hacker B R,Peacock S M,Abers G A,et al.Subduction factory 2.Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J].Journal of Geophysical Research:Solid Earth(1978-2012),2003,108(B1):ESE 11-1 to ESE 11-15.
    [5]Brudzinski M R,Thurber C H,Hacker B R,et al.Global prevalence of double Benioff zones[J].Science,2007,316(5830):1 472-1 474.
    [6]Yamasaki T,Seno T.Double seismic zone and dehydration embrittlement of the subducting slab[J].Journal of Geophysical Research:Solid Earth(1978-2012),2003,108(B4):ESE 9-1 to ESE 9-21.
    [7]Perrillat J P,Daniel I,Koga K T,et al.Kinetics of antigorite dehydration:a real-time X-ray diffraction study[J].Earth and Planetary Science Letters,2005,236(3):899-913.
    [8]Schmidt M W,Poli S.Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J].Earth and Planetary Science Letters,1998,163(1):361-379.
    [9]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001:127-131.
    [10]关春秀,陈栋华.一水合草酸铵脱水的热分析动力学[J].中南民族大学学报:自然科学版,2004,23(1):14-17.
    [11]Wang D J,Karato S.Electrical conductivity of talc aggregates at 0.5 GPa:influence of dehydration[J].Physics and Chemistry of Minerals,2013,40(1):11-17.
    [12]Zhan D,Cong C J,Diakite K,et al.Kinetics of thermal decomposition of nickel oxalate dihydrate in air[J].Thermochimica Acta,2005,430(1):101-105.
    [13]Hong J H,Guo G H,Zhang K L.Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air[J].Journal of Analytical and Applied Pyrolysis,2006,77(2):111-115.
    [14]Bose K,Ganguly J.Thermogr-avimetric study of the dehydration kinetics of talc[J].American Mineralogist,1994,79(7/8):692-699.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心