渗透率的非均质性对CO_2地质封存的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
CO2地质封存可以减少化石燃料燃烧排放的CO2量,有效减缓温室效应。储层渗透率可以决定CO2通道的形成,进而改变其在储层中的运移规律,因而是影响CO2地质封存的重要因素。根据研究区基本地质数据、三维地震勘探结果和统计规律确定了渗透率的分布情况,运用储层多相流模拟软件TOUGH2-MP分析了渗透率的非均质性对CO2地质封存的影响。结果表明:(1)渗透率的分布情况对CO2储存量和注入压力的影响很大,相比于均值模型,CO2的注入总量明显减少,到达最大允许压力积聚所需的时间要比均质模型短;(2)在保证注入速率和压力积聚不超过允许最大值的双重要求下,定压和定量两种注入方案都有待改进,建议考虑如人工压裂等工程措施;(3)渗透率的非均质性使得CO2晕呈现出不规则扩散,经过20年的注入,其最大扩散距离约800m,比均质情况下小150m,须做好相应的监测工作。
Geological sequestration of CO2 helps reduce the volume of CO2 emissions from the combustion of fossil fuels, and may help reduce global warming. The distribution of permeability may determine the formation of CO2 migration paths, thereby changing the underground migration of CO2. Permeability distributions in the model area are determined based on hydrogeological conditions observed in Ordos Basin and three-dimensional seismic exploration results at the site. The numerical model is run with TOUGH2-MP software to analyze the impacts of heterogeneous permeability on CO2 storage. Model results lead to three main conclusions. Firstly, the distribution of permeability is of great importance to CO2 storage capacity and injection pressure. Compared with the homogeneous model, CO2 injection volume in the heterogeneous model decreased significantly, as did the time required to reach the maximum allowable pressure. Secondly, injection schemes may need to be improved in cases when there is a required injection rate and maximum allowable pressure build-up. As a consequence, appropriate engineering treatments, such as hydraulic fracturing, are recommended. Third, heterogeneous permeability makes CO2 plumes appear irregular and annular in shape. After 20 years of injections, the CO2 migration distance reached 800 m in the heterogeneous model, compared with only 150 m in the homogeneous model. This study highlights the needs for proper monitoring of geological CO2 sequestration.
引文
[1]张丽君.减少温室气体排放的重要手段—二氧化碳的地质储存[J].国土资源情报,2001,(12):8-14.Zhang L J.An important means of reducing greenhouse gas emissions:CO2 geological storage[J].Land and Resources Information,2001,(12):8-14.
    [2]Meng K C,Williams R H,Celia M A.Opportunities for low cost CO2 storage demonst ration projects in China[J].Energy Policy,2007,35:2368-2378.
    [3]Ciferno J P,Litynski J L,Plasynski S I.DOE/NETL Carbondioxide capture and storagerd&droadmap[R].National Energy Technology,2010.
    [4]李采,张可霓,许雅琴,等.注入速率对CO2地质储存封存潜力的影响分析[J].上海国土资源,2011,32(1):24-27,32.Li C,Zhang K N,Xu Y Q,et al.Analysis of impacts of variation in injection rate on the potential of proposed reservoir for CO2geological sequestration[J].Shanghai Land&Resources,2011,32(1):24-27,32.
    [5]许雅琴,张可霓,王洋.基于数值模拟探讨提高咸水层CO2封存注入率的途径[J].岩土力学,2012,33(12):3825-3832.Xu Y Q,Zhang K N,Wang Y.Numerical investigation for enhancing injectivity of CO2 storage in saline aquifers[J].Rock and Soil Mechanics,2012,33(12):3825-3832.
    [6]凌璐璐,许雅琴,张可霓,等.数值模拟在CO2地质封存示范项目中的应用[J].岩土力学,2013,34(7):2017-2030.Ling L L,Xu Y Q,Zhang K N,et al.Application of numerical simulation to pilot project of CO2 geological sequestration[J].Rock and Soil Mechanics,2013,34(7):2017-2030.
    [7]严科,杨少春,任怀强.储层宏观非均质性定量表征研究[J].石油学报,2008,29(6):870-874.Yan K,Yang S C,Ren H Q.Research on quantitative characterization of macroscopic heterogeneity of reservoir[J].Acta Petrolei Sinica,2008,29(6):870-874.
    [8]张岩,李华昌,李允,等.渗透率随机分布模型在低渗透油藏波及系数研究中的应用[J].钻采工艺,2013,36(1):39-42.Zhang Y,Li H C,Li Y,et al.Application of permeability random distribution model in study of low permeability reservoirs sweep efficiency[J].Drilling&Production Technology,2013,36(1):39-42.
    [9]杨少春.储层非均质性定量研究的新方法[J].石油大学学报(自然科学版),2000,24(1):53-56.Yang S C.A new method for quantitatively studying reservoir heterogeneity[J].Journal of the University of Petroleum,China(Edition of Natural Science),2000,24(1):53-56.
    [10]文华,孙娜.一种定量描述气藏储层非均质性的新方法[J].特种油气藏,2011,18(1):51-54.Wen H,Sun N.A new quantitative description method of gas reservoir heterogeneity[J].Special Oil and Gas Reservoirs,2011,18(1):51-54.
    [11]Narasimhan T N,Witherspoon P A.An integrated finite difference method for analyzing fluid flow in porous media[J].Water Resources Research,1976,12(1):57-64.
    [12]Pruess K,Oldenburg C,Moridis G.TOUGH2 user’s guide(version 2.0)[R].Lawrence Berkeley National Laboratory Report LBNL:46134,Berkeley,CA USA,1999.
    [13]施小清,张可霓,吴吉春.TOUGH2软件的发展及应用[J].工程勘察,2009,37(10):29-39.Shi X Q,Zhang K N,Wu J C.The history and application of TOUGH2 code[J].Geotechnical Investigation&Surveying,2009,37(10):29-39.
    [14]王洋,张可霓.增强型地热系统(EGS)的裂隙模拟方法[J].上海国土资源,2011,32(3):77-80.Wang Y,Zhang K N.Modeling approaches for fractures in enhanced geothermal system(EGS)[J].Shanghai Land&Resources,2013,34(2):71-75,79.
    [15]郭朝斌,张可霓,凌璐璐.天然气水合物数值模拟方法及其应用[J].上海国土资源,2013,34(2):71-75,79.Guo C B,Zhang K N,Ling L L.Numerical simulation methods and their application to natural gas hydrate exploration[J].Shanghai Land&Resources,2013,34(2):71-75,79.
    [16]Pruess K.ECO2N:A TOUGH2 fluid property module for mixtures of water,Na Cl,and CO2[R].Report LBNL-57952,Lawrence Berkeley National Laboratory,Berkeley CA USA,2005.
    [17]Zhang K N,Wu Y S,Pruess K.User’s guide for TOUGH2-MP:A massively parallel version of the TOUGH2 code[R].Report LBNL-315E.Lawrence Berkeley National Laboratory,Berkeley CA USA,2008.
    [18]Van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5):892-898.
    [19]US Environmental Protection Agency.Determination of maximum injection pressure for class I wells[R].USEPA Region 5:Underground injection control section regional guidance#7.EPA,Washington,DC,USA,1994.
    [20]Zhou Q,Birkholzer J T,Tsang C F,et al.A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations[J].International Journal of Greenhouse Gas Control,2008,2(4):626-639.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心