双薄壁高墩曲线多跨连续刚构桥自振特性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为确定双薄壁高墩曲线多跨连续刚构桥的自振特性,以某双薄壁高墩曲线五跨连续刚构桥为实例,应用ANSYS有限元软件中的Solid 65实体单元和Beam 188梁单元建立该桥空间有限元计算模型,同时利用Midas/Civil建立大桥空间梁单元有限元模型,探讨不同软件、不同单元类型以及预应力张拉对双薄壁高墩曲线多跨连续刚构桥自振频率的影响,分析曲线桥梁结构的平曲线半径对双薄壁高墩曲线连续刚构桥的自振特性的影响,最后按照桥墩等线刚度的原则分析墩高对双薄壁高墩曲线连续刚构桥的自振特性的影响.计算结果表明:曲线连续刚构桥第1阶振动模态一般为纵飘;曲线桥梁结构动力特性及其力学行为的分析,建议选用可考虑翘曲的Beam 188梁单元模型;对于高等级公路中的曲线半径较大的双薄壁高墩曲线连续刚构桥,曲率半径对桥梁的自振特性影响很小;在保持墩线刚度不变的前提下,结构的自振频率随着墩高的增大而减小,可以通过优化墩的纵桥向厚度或双薄壁墩间距改善结构的整体刚度.
The free vibration feature of a five-span continuous rigid frame curved bridge with double thinwalled high pier was analyzed to understand free vibration feature of continuous rigid frame curved bridge with double thin-walled high pier. Solid 65 and Beam 188 element of analytical software ANSYS was used to build the bridge structural spatial model. Midas / Civil software was used to build the model of spatial beam element. By analyzing these models,the effect of the different software and element type and prestressed tension to structural vibration feature,the influence of curvature radius and pier height with principle of equal line stiffness was analyzed. The results indicated that the first-order vibration mode was longitudinal drift in general. Considering the structural feature and the rotational freedom,it was suggested that the dynamic properties and the mechanical behavior of the curvature bridge were analyzed by using Beam 188 element. The impact of curvature radius' on continuous rigid frame curved bridge with a large radius of curvature and double thin-walled high pier in the highway was not significant. Under the principle condition of equal line stiffness,the natural frequencies of the structure decreased with pier height's increase. The structural stiffness could be improved by changing the piers' longitudinal thickness or double thin-wall pier spacing.
引文
[1]杨昀,周列茅,周勇军.弯桥与高墩[M].北京:人民交通出版社,2011:339-348.
    [2]徐君兰,顾安邦.连续刚构桥主墩刚度合理性的探讨[J].公路交通科技,2005,22(2):59-62.
    [3]周永军.高墩大跨曲线连续刚构桥梁地震响应的设计参数研究[D].西安:长安大学,2006.
    [4]王艳,陈淮,李杰.曲率半径和墩高对大跨刚构桥自振特性及抗震性能的影响分析[J].世界桥梁,2014,42(3):65-70.
    [5]吴六政.曲线梁桥设计中几个关键技术研究[D].成都:西南交通大学,2004.
    [6]宗周红,赖苍林,林有勤,等.大跨度预应力混凝土连续刚构桥的动力特性分析[J].地震工程与工程振动,2004,24(3):98-104.
    [7]王一文,陈萍.大跨曲线高墩连续刚构桥自振特性研究[J].科学技术与工程,2012,12(34):9415-9419.
    [8]石雄伟,刘海鹏,周勇军,等.双薄壁墩间距对连续刚构桥地震响应的影响[J].交通运输工程学报,2010,10(3):35-40.
    [9]杨艳军.曲线连续刚构桥力学性能研究[D].西安:长安大学,2010.
    [10]吴卫祥.预应力混凝土曲线梁桥的受力分析[D].长沙:湖南大学,2005.
    [11]何波,郭小川,朱宏平,等.大跨薄壁墩连续刚构桥动力特性研究[J].世界桥梁,2006(4):40-43.
    [12]李杰,陈淮,王艳.双薄壁高墩曲线连续刚构桥地震响应分析[J].世界地震工程,2012,28(4):36-43.
    [13]周明坤.高墩多跨曲线连续刚构桥自振及地震时程响应分析研究[D].郑州:郑州大学,2014.
    [14]李国豪.桥梁结构稳定与振动[M].修订版.北京:中国铁道出版社,2002:252-266.
    [15]王述超,万成宏,王文林.高墩连续梁桥的稳定分析[J].信阳师范学院学报:自然科学版,2009,22(4):598-602.
    [16]魏俊龙.波形钢腹板箱梁斜塔无背索斜拉桥地震响应分析[J].河南科技大学学报:自然科学版,2014,35(3):64-68.
    [17]葛俊颖.桥梁工程软件Midas Civil使用指南[M].北京:人民交通出版社,2013:356-358.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心