南京地铁地基黏土物理力学参数相关性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过大量的土工试验,对南京地铁地基黏土物理力学参数间的相关关系,特别是黏聚力、压缩模量、液性指数等与含水量、密度、孔隙比、标贯击数等的相关关系进行研究,并给出相应的数学回归方程式和相关系数。结果表明:南京地铁地基黏土的密度、孔隙比、压缩模量、压缩系数、液性指数、导热系数等物理力学参数与黏土含水量之间的线性相关程度好,相关系数达0.928以上,平均为0.975 7;黏土的压缩模量、黏聚力、导热系数随黏土的密度增大而增大,压缩系数随黏土的密度增大而减小,且这4个参数与密度的线性相关程度很好,相关系数达0.93以上,平均为0.953 5;压缩模量、黏聚力、液性指数、导热系数等与孔隙比的线性相关程度也较好,相关系数达0.89以上,平均为0.941 835;孔隙比、压缩系数、液性指数、内摩擦角、黏聚力、压缩模量、导热系数、标贯击数的线性相关程度很好,相关系数达0.947以上,平均为0.973 53。
Through large numbers of geotechnical engineering tests,the correlativity between the physical and mechanical parameters of foundation clay in Nanjing Metro is studied,particularly between the cohesive force,compressive modulus,liquidity index,etc.and water content,density,void ratio,the blow count of standard penetration test(SPT),etc.Corresponding mathematical regression equations and correlativity coefficients are given.Results show that the physical and mechanical parameters of foundation clay in Nanjing Metro engineering,such as density,void ratio,compressive modulus,compressive coefficient,liquid index and thermal conductivity coefficient,etc are in good linear correlativity with the water content of clay.The correlativity coefficient is larger than 0.928,and the average value is 0.975 7.The compressive modulus,cohesive force and thermal conductivity coefficient of clay increase along with the increase of clay density.The compressive coefficient decreases with the increase of clay density.These 4 parameters are in good linear correlativity with density.The correlativity coefficient is over 0.93,and the average value is 0.953 5.The compressive modulus,cohesive force,liquid index and thermal conductivity coefficient,etc.are also in good linear correlativity with void ratio.The correlativity coefficient is over 0.89,and the average value is 0.941 835.Void ratio,compressive coefficient,liquid index,inner friction angle,cohesive force,compressive modulus and thermal conductivity coefficient are in good linear correlativity with the blow count of SPT.The correlativity coefficient is over 0.947,and the average value is 0.973 53.
引文
[1]包旭范,高强,周顺华,等.强夯加固软土地基机理的有限元分析[J].中国铁道科学,2005,26(2):8-14.(BAO Xufan,GAO Qiang,ZHOU Shunhua,et al.Finite Element Analysis for Mechanism on Foundation Stabiliza-tion of Soft Clay by Dynamic Compaction Method[J].China Railway Science,2005,26(2):8-14.in Chinese)
    [2]杨永平,魏庆朝,张鲁新,等.青藏铁路多年冻土地区热管路基三维数值分析[J].中国铁道科学,2005,26(2):20-24.(YANG Yongping,WEI Qingchao,ZHANG Luxin,et al.3D Numerical Study on the Thermosyphon Used in Em-bankments in Permafrost Regions of Qinghai-Tibet Railway[J].China Railway Science,2005,26(2):20-24.inChinese)
    [3]吴礼年,谢巧勤,方玉友.合肥地区粘性土物理力学指标的相关性分析[J].水文地质工程地质,2002(4):43-45.(WU Linian,XIE Qiaoqin,FANG Yuyou.Correlation Analysis of the Physical-Mechanical Indexes of Cohesive Soilin Hefei Area[J].Hydrogeology and Engineering Geology,2002(4):43-45.in Chinese)
    [4]孟毅.饱和软土含水量与孔隙比、承载力回归关系探讨[J].西部探矿工程,1997,9(1):8-9.
    [5]韩自力,张千里.既有线提速路基动应力分析[J].中国铁道科学,2005,26(5):1-5.(HAN Zili,ZHANG Qianli.Dynamic Stress Analysis on Speed-Increase Subgrade of Existing Railway[J].ChinaRailway Science,2005,26(5):1-5.in Chinese)
    [6]宫全美,徐勇,周顺华.地铁运行荷载引起的隧道地基土动力响应分析[J].中国铁道科学,2005,26(5):47-51.(GONG Quanmei,XU Yong,ZHOU Shunhua.Dynamic Response Analysis of Tunnel Foundation by Vehicle Vi-bration in Metro[J].China Railway Science,2005,26(5):47-51.in Chinese)
    [7]蒋鑫,邱延峻,周成.深厚层软土地基袋装砂井处治的数值模拟[J].中国铁道科学,2005,26(1):31-35.(JIANG Xin,QIU Yanjun,ZHOU Cheng.Numerical Simulation of Deep Soft Ground Treatment by Sacked SandDrain[J].China Railway Science,2005,26(1):31-35.in Chinese)
    [8]朱瑞成.饱和软土天然含水量估算指标及w-e回归方程的建立[J].西部探矿工程,1994,6(4):46-48.
    [9]余宏明,胡艳欣,唐辉明.红色泥岩风化含砾粘土的抗剪强度参数与物理性质相关性研究[J].地质科技情报,2002,21(4):93-95.(YU Hongming,HU Yanxin,TANG Huiming.Research on the Relativity between the Strength of Red MudstoneWeathered Pebble Soil and Physical Characters[J].Geological Science and Technology Information,2002,21(4):93-95.in Chinese)
    [10]赵明龙,王建华,梁爱华.干湿循环对水泥改良土疲劳强度影响的试验研究[J].中国铁道科学,2005,26(2):25-28.(ZHAO Minglong,WANG Jianhua,LIANG Aihua.Test Study on the Effect of Cyclic Dry-Wet Process on the Fa-tigue Strength of Cement-Soil[J].China Railway Science,2005,26(2):25-28.in Chinese)
    [11]宫全美,周顺华,佘才高,等.南京地铁1线区间隧道地基的地震液化判别[J].中国铁道科学,2001,22(2):88-95.(GONG Quanmei,ZHOU Shunhua,SHE Caigao,et al.Ground Layer Liquefaction Analysis of Nanjing MetroLine 1[J].China Railway Science,2001,22(2):88-95.in Chinese)
    [12]张千里,杨灿文.广义有效应力及剪切波速度与土的力学特性的研究及其在路基工程中的应用[J].中国铁道科学,2001,22(3):133-136.(ZHANG Qianli,YANG Canwen.Study on Generalized Effective Stress and Shear Wave Velocity with Soil Behav-iors and Its Application in Subgrade Engineering[J].China Railway Science,2001,22(3):133-136.in Chinese)
    [13]熊承仁,刘宝琛,张家生,等.重塑非饱和粘性土的抗剪强度参数与物理状态变量的关系研究[J].中国铁道科学,2003,24(3):17-20.(XIONG Chengren,LIU Baochen,ZHANG Jiasheng,et al.Relation between Shear Strength Parameters andPhysical State Variables of Remolded Unsaturated Cohesive Soil[J].China Railway Science,2003,24(3):17-20.in Chinese)
    [14]赵有明,江辉煌,张惠明.深圳地区软粘土变形参数研究[J].中国铁道科学,2004,25(3):40-43.(ZHAO Youming,JIANG Huihuang,ZHANG Huiming.Deformation Parameters of Shenzhen Soft Clay[J].China Railway Science,2004,25(3):40-43.in Chinese)
    [15]梁爱华,王建华.饱和水泥改良土抗压强度与弹性波速及其相关性的影响[J].中国铁道科学,2005,26(6):58-62.(LIANG Aihua,WANG Jianhua.Effect of Saturation on Elastic Wave Velocity and Compressive Strength of Ce-ment Soil and Their Correlation[J].China Railway Science,2005,26(6):58-62.in Chinese)
    [16]李琦,赵有明.水泥土受力性能试验研究[J].中国铁道科学,2005,26(4):82-84.(LI Qi,ZHAO Youming.Laboratory Experimental Research on the Compressive Strength of Cement Soil[J].China Railway Science,2005,26(4):82-84.in Chinese)
    [17]南京大学地球科学系、江苏地质工程勘察院、南京市测绘勘察研究院.南京地铁南北线一期工程(详细勘察阶段)工程地质勘察总报告[R].南京:[出版者不详],2001.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心