大跨度铁路悬索桥风—车—桥耦合动力分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
悬索桥虽跨越能力大但刚度较弱,在列车与风荷载的共同作用下易产生较大振动,影响桥上行车安全。为研究风荷载作用下列车通过铁路悬索桥时的车辆与桥梁动力响应及安全性,以轮轨密贴理论定义竖向轮轨作用力,以简化的Kalker蠕滑理论定义横向轮轨作用力,以静风力及抖振风力模拟作用在车辆和桥梁上的风荷载,建立简化的大跨度铁路悬索桥的风—车—桥耦合动力学模型,并给出基于系统间积分的风—车—桥迭代算法。运用该方法对强风条件下列车通过跨度(52+800+800+52)m悬索桥的行车安全性分析表明,系统间迭代算法具有较高的计算效率,仅经过几次迭代即可得到精度较高的计算结果;该大跨度悬索桥在桥面平均风速为25m.s-1时,桥梁跨中竖向动位移较无风状态变化不大,而桥梁跨中竖向加速度及桥跨、桥塔横向动位移和加速度响应则较无风状态有大幅度增加,可见,动风荷载对风—车—桥系统的振动起到控制作用。
The suspension bridge has longer span but smaller stiffness.It may vibrate obviously under the joint loads of vehicle and wind,which affects the running safety of the passing trains.In order to study the dynamic responses of vehicle and bridge as well as the safety factors for train passing through railway suspension bridge under wind load,the simplified dynamic interaction model of wind-vehicle-bridge for longspan railway suspension bridge is established.In which the corresponding assumption is used to define vertical wheel-rail interaction force,the simplified Kalker creep theory is used to define lateral wheel-rail interaction force,the static and turbulent wind forces are used to define the wind loads on both the bridge and the train,and the inter-system integral based wind-vehicle-bridge iterative algorithm is proposed.The method is adopted to analyze the running safety of a train passing a(52+800+800+52) m suspension bridge under strong wind.It is found that the inter-system iterative algorithm has better computational efficiency,and the result with higher accuracy can be obtained by only a few iteration steps.There is little change in the vertical dynamic displacement of the mid-span of long-span suspension bridge under no wind and with the average wind speed of 25m.s-1.However,there is a substantial increase in the vertical acceleration of mid-span,the lateral dynamic displacement of bridge span and bridge tower compared with that under no wind condition.It can be concluded that the dynamic wind load has a dominant effect on the vibration of wind-vehicle-bridge dynamic interaction system.
引文
[1]夏禾,张楠.车辆与结构动力相互作用[M].2版.北京:科学出版社,2005.
    [2]张楠,夏禾,郭薇薇,等.京沪高速铁路南京大胜关长江大桥风—车—桥耦合振动分析[J].中国铁道科学,2009,30(1):41-48.(ZHANG Nan,XIA He,GUO Weiwei,et al.Analysis on the Wind-Vehicle-Bridge Coupling Vibration for NanjingDashengguan Yangtze River Bridge of Beijing-Shanghai High-Speed Railway[J].China Railway Science,2009,30(1):41-48.in Chinese)
    [3]翟婉明.车辆—轨道耦合动力学[M].3版.北京:科学出版社,2007.
    [4]杜宪亭.强地震作用下大跨度桥梁空间动力效应及列车运行安全研究[D].北京:北京交通大学,2011.(DU Xianting.Research on Spatial Dynamic Effect of Long-Span Bridge and Running Safety of Train during StrongEarthquakes.[D].Beijing:Beijing Jiaotong University,2011.in Chinese)
    [5]吴定俊,李奇,陈艾荣.车桥耦合振动求解迭代数值稳定性问题[J].力学季刊,2007,28(3):406-411.(WU Dingjun,LI Qi,CHEN Airong.Numerical Stability of Iteration Scheme for Solution of Vehicle-Bridge Cou-pling Vibration[J].Chinese Quarterly of Mechanics,2007,28(3):406-411.in Chinese)
    [6]DIANA G,BRUNI S,CHELI F,et al.Dynamic Analysis of Transmission Line Crossing“Lago de Maracaibo”[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74/75/76:977-986.
    [7]BAKER C J.Ground Vehicles in High Cross Winds PartⅡ:Unsteady Aerodynamic Forces[J].Journal of Fluidsand Structures,1991(5):91-111.
    [8]BAKER C J.Ground Vehicles in High Cross Winds PartⅢ:The Interaction of Aerodynamic Forces and the VehicleSystem[J].Journal of Fluids and Structures,1991(5):221-241.
    [9]BAKER C J.Ground Vehicles in High Cross Winds PartⅠ:Steady Aerodynamic Forces[J].Journal of Fluids andStructures,1991(5):69-90.
    [10]郑史雄,李永乐,陶奇.天兴洲公铁两用长江大桥气动参数风洞试验[J].中国铁道科学,2007,28(2):25-30.(ZHENG Shixiong,LI Yongle,TAO Qi.Wind Tunnel Test on Aerodynamic Parameters Tianxingzhou Highway-Railway Bridge Across Yangtze River[J].China Railway Science,2007,28(2):25-30.in Chinese)
    [11]项海帆,林志兴,鲍卫刚.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996.
    [12]中华人民共和国国家标准局.GB5599—85铁道车辆动力学性能评定和试验鉴定规范[S].北京:中国计划出版社,1985.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心