H型斜拉桥桥塔横桥向结构抗震设计与分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在工程实际中,通常需要在满足静力需求的基础上大幅提高塔底和横梁截面的配筋率来满足斜拉桥桥塔在罕遇地震作用下既定的性能目标,这种做法不仅不够经济,同时也增加了下部桩基础的抗震需求。通过对H型桥塔斜拉桥桥塔结构设计参数进行研究,探讨了斜拉桥桥塔上横梁位置、塔柱-横梁刚度比、上横梁与塔柱的约束条件以及桥塔上横梁进入塑性的程度对斜拉桥桥塔横桥向地震响应的影响。结果表明:斜拉桥桥塔上横梁位置变化、横梁刚度变化以及考虑上横梁的屈服耗能均能改变桥塔横桥向的地震响应,但结果并不显著,而改变上横梁与塔柱的约束条件能显著降低桥塔的横桥向地震需求。
According to our current bridge seismic design codes,the bridge tower is explicitly required to remain almost elastic even under the excitation of occasionally happened earthquake.To achieve this seismic performance objective,usually the steel ratios of tower base and strut are required to satisfy the static loading demand and increase by a large margin as well in most engineering practices which leads to engineering inefficiency as well as a rising seismic demand for the substructure.Therefore,the structural design parameters including the location,the stiffness and the constrain condition of the strut with respect to the tower column of H shape tower were studied to explore their effect on the transverse seismic responses of cable-stayed bridge tower,Moreover,the effect of yield intensity of the strut on the seismic responses of the tower column is also studied.The results show that the location and the stiffness of the strut have a slight effect on the seismic responses while the transverse seismic demands of the bridge tower decrease drastically when the constrain condition between the cross beam and the tower column changes.
引文
[1]JTG/T B02—01—2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [2]Eurode 8:Design provisions for earthquake resistance of structures(draft for development),part 2.Bridges[S].1998
    [3]中华人民共和国住房和城乡建设部.CJJ 166—2011城市桥梁抗震设计规范[S].北京:中国建筑工业出版社,2011.
    [4]叶爱君,范立础.超大跨度斜拉桥的横向约束体系[J].中国公路学报,2007,20(2):63-67.Ye A J,Fan L C.Lateral constraint systems for superlong-span cable-stayed bridge[J].China Journal of Highway and Transport,2007,20(2):63-67.
    [5]杨喜文,张文华,李建中.大跨度斜拉桥横桥向减震研究[J].地震工程与工程振动,2012,32(1):86-92.Yang X W,Zhang W H,Li J Z.Seismic design for longspan,cable-stayed bridges in transverse direction[J].Earthquake Engineering and Engineering Vibaration,2012,32(1):86-92.
    [6]徐艳,段昕智,李建中.强震作用下斜拉桥纵桥向非线性地震反应分析[J].华南理工大学学报,2012,40(6):132-138.Xu Y,Duan X Z,Li J Z.Analysis of nonlinear seismic response of cable-stayed bridge subjected to longitudinal strong ground motions[J].Journal of South China University of Technology,2012,40(6):132-138.
    [7]Okamoto Y,Nakamura S.Static and seismic studies on steel/concrete hybrid towers for multi-span cable-stayed bridges[J].Journal of Constructional Steel Research,2011,67(2):203-210.
    [8]Camara A,Astiz M A.Pushover analysis for the seismic response prediction of cable-stayed bridges under multidirectional excitation[J].Engineering Structures,2012,41:444-455.
    [9]Endo K,Kawatoh C,Unjoh S.Analytical study on seismic performance evaluation of long-span suspension bridge steel tower[C]//13th World Conference on Earthquake Engineering Vancouver,BC,Canada,2004,No.944.
    [10]Goel R K,Chopra A K.Nonlinear analysis of ordinary bridges crossing fault-rupture zones[J].Journal of Bridge Engineering,2009,14(3):216-224.
    [11]Son J,Lee H J.Performance of cable-stayed bridge pylons subjected to blast loading[J].Engineering Structures,2011,33(4):1133-1148.
    [12]Thai H T,Kim S E.Second-order inelastic analysis of cable-stayed bridges[J].Finite Elements in Analysis and Design,2012,53:48-55.
    [13]Mcdaniel C C,Seible F.Influence of inelastic tower links on cable-supported bridge response[J].Journal of Bridge Engineering,2005,10(3):272-280.
    [14]Arzoumanidis S,Shama A A,Marlow S J,et al.The new Tacoma Narrows Suspension Bridge:critical issues in seismic analysis and design[C]//Proceedings of the2005 Structures Congress and the 2005 Forensic Engineering Symposium,2005:21-31.
    [15]Combault J,Teyssandier J P.The Rion-Antirion bridge:concept,design and construction[C]//Proceedings of the2005 Structures Congress and the 2005 Forensic Engineering Symposium,2005:149-158.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心