在役钢筋混凝土连续刚构桥梁抗震性能评估
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了分析材料耐久性劣化对结构抗震性能的影响,针对遭受氯离子侵蚀的钢筋混凝土连续刚构桥,提出在役桥梁结构的抗震性能评估方法。应用菲克第二定律,得到损伤混凝土、锈蚀钢筋力学性能随时间的衰减规律;应用Min概率分布函数,得到针对桥梁结构的地震危险性曲线方程;应用IDA增量动力分析法,得到损伤构件和结构整体的地震易损性曲线和风险性曲线,完成结构的抗震性能评估。研究结果表明:得到的材料耐久性损伤劣化规律易于工程应用;桥梁结构与建筑结构相比,地震危险性曲线公式相差一个常数0.301;在相同地震作用下,桥墩纵桥向的易损性大于横桥向,结构系统的易损性和风险性均大于构件;结构发生同等损伤程度的易损性和风险概率均随服役时间而增大。
In order to analyze the effect of material durability deterioration on seismic performance of structure,with reinforced concrete continuous rigid frame bridge suffering chloride ion erosion as the research object,seismic performance evaluation method for bridges in service was proposed.With Fick's Second Law,mechanical properties attenuation laws of damaged concrete and corroded reinforcement with time were got;with Min probability distribution function,the seismic hazard curve equation for bridge structure was got;with IDA incremental dynamic analysis method,seismic fragility curves and risk curves of members and the whole structure were obtained,and the seismic performance evaluation for the structure was completed.The results show that the obtained material durability damage and degradation laws are feasible for engineering application;compared with building structure,seismic hazard curve formula of bridge structure differs by a constant 0.301;under the same earthquake action,the transverse direction fragility of the pier is greater than the longitudinal direction fragility of the pier,and the fragility and risk probability of the structural system are greater than that of the components;and underthe condition of the same degree of damage,the structural fragility and risk probability both increase with service time.
引文
[1]高小旺,魏琏,韦承基.基于概率的结构抗震设计方法[J].建筑结构学报,1988,9(6):58-65.GAO Xiao-wang,WEI Lian,WEI Cheng-ji.A Probability Based Method for Seismic Design[J].Journal of Building Structures,1988,9(6):58-65.
    [2]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨[J].建筑结构学报,2000,21(1):5-11.CHENG Geng-dong,LI Gang.Some Key Problems on Performance-based Seismic Design[J].Journal of Building Structures,2000,21(1):5-11.
    [3]吕大刚,李晓鹏,王光远.基于可靠度和性能的结构整体地震易损性分析[J].自然灾害学报,2006,15(2):107-114.LU Da-gang,LI Xiao-peng,WANG Guang-yuan.Global Seismic Fragility Analysis of Structures Based on Reliability and Performance[J].Journal of Natural Disasters,2006,15(2):107-114.
    [4]BERTO L,VITALIANI R,SAETTA A,et al.Seismic Assessment of Existing RC Structures Affected by Degradation Phenomena[J].Structural Safety,2009,31(4):284-297.
    [5]AKIYAMA M,FRANGOPOL D M.Long-term Seismic Performance of RC Structures in an Aggressive Environment:Emphasis on Bridge Piers[J].Structure and Infrastructure Engineering,2014,10(7):865-879.
    [6]CUSSON D,LOUNIS Z,DAIGLE L.Benefits of Internal Curing on Service Life and Life-cycle Cost of High-performance Concrete Bridge Decks-A Case Study[J].Cement&Concrete Composites,2010,32(5):339-350.
    [7]SONG L G,SUN W,GAO J M.Time Dependent Chloride Diffusion Coefficient in Concrete[J].Journal of Wuhan University of Technology:Materials Science Edition,2013,28(2):314-319.
    [8]CORONELLI D,GAMBAROVA P.Structural Assessment of Corroded Reinforced Concrete Beams:Modeling Guidelines[J].Journal of Structural Engineering,2004,130(8):1214-1224.
    [9]ANGST U,ELSENER B,LARSEN C K,et al.Critical Chloride Content in Reinforced Concrete-A Review[J].Cement and Concrete Research,2009,39(12):1122-1138.
    [10]张伟平,商登峰,顾祥林.锈蚀钢筋应力-应变关系研究[J].同济大学学报:自然科学版,2006,34(5):586-592.ZHANG Wei-ping,SHANG Deng-feng,GU Xianglin.Stress-strain Relationship of Corroded Steel Bars[J].Journal of Tongji University:Natural Science,2006,34(5):586-592.
    [11]LIU J W,WANG Z M,XIE F R,et al.Seismic Hazard Assessment for Greater North China from Historical Intensity Observations[J].Engineering Geology,2013,164:117-130.
    [12]高小旺,鲍蔼斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13-22.GAO Xiao-wang,BAO Ai-bin.Probabilistic Model and Its Statistical Parameters for Seismic Load[J].Earthquake Engineering and Engineering Vibration,1985,5(1):13-22.
    [13]高孟潭.新的国家地震区划图[J].地震学报,2003,25(6):630-636.GAO Meng-tan.New National Seismic Zoning Map of China[J].Acta Seismologica Sinica,2003,25(6):630-636.
    [14]LI Z H,JIN Y L,CHEN Y F,et al.Anti-seismic Reliability Analysis of Continuous Rigid-frame Bridge Based on Numerical Simulations[J].The IES Journal Part A:Civil&Structural Engineering,2013,6(1):18-31.
    [15]陈志,管国东.28d龄期内混凝土轴心抗压强度统计分析[J].湖南交通科技,2004,30(1):70-72.CHEN Zhi,GUAN Guo-dong.Statistical Analysis of Concrete Axial Compressive Strength in 28Days Age[J].Hunan Communication Science and Technology,2004,30(1):70-72.
    [16]BIONDINI F,BONTEMPI F,FRANGOPOL D M,et al.Reliability of Material and Geometrically Nonlinear Reinforced and Prestressed Concrete Structures[J].Computers&Structures,2004,82(13/14):1021-1031.
    [17]GB/T 50283—1999,公路工程结构可靠度设计统一标准[S].GB/T 50283—1999,Unified Standard for Reliability Design of Highway Engineering Structures[S].
    [18]XIA J,JIN W L,ZHAO Y X,et al.Mechanical Performance of Corroded Steel Bars in Concrete[J].Proceedings of the Institution of Civil Engineers:Structures and Buildings,2013,166(5):235-246.
    [19]赵珺,牛荻涛.大跨径在役桥梁随机地震动模拟方法[J].交通运输工程学报,2013,13(1):27-35.ZHAO Jun,NIU Di-tao.Simulation Method of Random Ground Motion for Large Span Bridge in Service[J].Journal of Traffic and Transportation Engineering,2013,13(1):27-35.
    [20]PARK Y J,ANG A H S.Mechanistic Seismic Damage Model for Reinforced Concrete[J].Journal of Structural Engineering,1985,111(4):722-739.
    [21]SUNG Y C,HSU C C,HUNG H H,et al.Seismic Risk Assessment System of Existing Bridges in Taiwan[J].Structure and Infrastructure Engineering,2013,9(9):903-917.
    [22]LIU Xiao-gang,FAN Jian-sheng,NIE Jian-guo,et al.Behavior of Composite Rigid Frame Bridge Under Bidirectional Seismic Excitations[J].Journal of Traffic and Transportation Engineering:English Edition,2014,1(1):62-71.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心