水平往复荷载作用下部分填充混凝土圆形钢桥墩柱的力学性能
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了探明部分填充混凝土圆形钢桥墩破坏机理和抗震性能,对部分填充混凝土圆形钢桥墩柱在轴力和水平往复荷载作用下的弹塑性力学性能进行了试验和数值分析。在长细比、径厚比参数相同的条件下,制作了2组共8根桥墩柱试件,考察混凝土填充高度对该类桥墩柱最大承载力、延性等抗震性能的影响。同时,为了进一步讨论试件应力分布及变形破坏情况,对8根试验试件采用非线性有限元软件ABAQUS进行了数值分析。结果表明:与空钢管桥墩柱相比,部分填充混凝土圆形钢桥墩柱具有良好的抗震性能;随着混凝土填充率ξ的增加,该类桥墩柱的最大承载力和延性均有显著提高;对于SC34-66系列4个试件,ξ达到0.28后,持续增加混凝土的填充率,虽然能提高试件的承载力,但延性下降;结构破坏时钢管根部出现了应力集中现象,混凝土等效塑性应变分布范围较大,表明钢管与混凝土共同有效地抵御了外荷载作用。
In order to investigate failure mechanism and seismic performance of partially concretefilled steel(CFS)circular bridge piers,the elastio-plastic mechanical behavior experiment and numerical analysis of partially CFS circular piers were carried out under constant axial load and cyclic lateral load.At the same slenderness ratio and radius-thickness ratio,8specimens in two series had been examined to study the impact of the filled concrete height on the maximum strength and the ductility.And in order to study the stress distribution and deformation damage of specimens,these 8specimens had been numerically analyzed by nonlinear finite element analysis ABAQUS package.The results show that through comparison with hollow steel tube piers,partially CFS circular piers behave better in seismic performance.As the filled concrete ratioξincreases,the maximum strength and ductility of the pier are improved significantly.However it can be found that whenξreaches 0.28,though the maximum strength of the pier(SC34-66series)is improved asξincreases,the ductility declines.It is found that stress concentration occurs at the root of steel tube and the distribution of equivalent plastic strain of concrete is large while structure fails through FEM analysis,which indicates that the steel tube and concrete together resist the external loads effectively.
引文
[1]JTG/T B02-01—2008,公路桥梁抗震设计细则[S].JTG/T B02-01—2008,Guidelines for Seismic of Highway Bridges[S].
    [2]CJJ 166—2011,城市桥梁抗震设计规范[S].CJJ 166—2011,Code for Seismic Design of Urban Bridge[S].
    [3]KAWASHIMA K,ZAFRA R,SASAKI T,et al.Effect of Polypropylene Fiber Reinforced Cement Composite and Steel Fiber Reinforced Concrete for Enhancing the Seismic Performance of Bridge Columns[J].Journal of Earthquake Engineering,2011,15(8):1194-1211.
    [4]王志强,葛继平,魏红一,等.节段拼装桥墩抗震性能研究进展[J].地震工程与工程振动,2009,29(4):147-154.WANG Zhi-qiang,GE Ji-ping,WEI Hong-yi,et al.Recent Development in Seismic Research of Segmental Bridge Columns[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(4):147-154.
    [5]KITADA T.Ultimate Strength and Ductility of Stateof-the-art Concrete-filled Steel Bridge Piers in Japan[J].Engineering Structures,1998,20(4/5/6):347-354.
    [6]谢文,孙利民,魏俊.附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J].中国公路学报,2014,27(3):59-70.XIE Wen,SUN Li-min,WEI Jun.Experimental Study on Seismic Performance of Bridge Piers with Structural Fuses and Its Application[J].China Journal of Highway and Transport,2014,27(3):59-70.
    [7]罗晓峰,项贻强,吴天真.基于性能的独柱桥墩抗震优化设计方法[J].中国公路学报,2014,27(7):85-90,126.LUO Xiao-feng,XIANG Yi-qiang,WU Tian-zhen.Seismic Optimization Design Method Based on Performance for Single-column Piers[J].China Journal of Highway and Transport,2014,27(7):85-90,126.
    [8]GE H,USAMI T.Strength of Concrete-filled Thinwalled Steel Box Columns:Experiment[J].Journal of Structural Engineering,1992,118(11):3036-3054.
    [9]USAMI T,GE H.Ductility of Concrete-filled Steel Box Columns Under Cyclic Loading[J].Journal of Structural Engineering,1994,120(7):2021-2040.
    [10]GE H,USAMI T.Cyclic Tests of Concrete-filled Steel Box Column[J].Journal of Structural Engineering,1996,122(10):1169-1177.
    [11]GOTO Y,MIZUNO K,KUMAR G P.Nonlinear Finite Element Analysis for Cyclic Behavior of Thinwalled Stiffened Rectangular Steel Columns with Infilled Concrete[J].Journal of Structural Engineering,2012,138(5):571-584.
    [12]MORISHITA M,AOKI T,SUZUKI M.Experimental Study on the Seismic Resistance Performance of Concrete-filled Steel Tubular Columns[J].Journal of Structural Engineering,2000,46A:73-83.
    [13]IURA M,ORINO A,ISHIZAWA T.Elasto-plastic Behaviour of Concrete-filled Steel Tubular Columns[J].Structural Engineering and Earthquake Engineering,2002,696(58):285-298.
    [14]GOTO Y,KUMAR G P,KAWANISHI N.Nonlinear Finite-element Analysis for Hysteretic Behavior of Thin-walled Circular Steel Columns with In-filled Concrete[J].Journal of Structural Engineering,2010,136(11):1413-1422.
    [15]马敬海.部分内填混凝土钢箱形断面桥墩抗震性能研究[D].南京:河海大学,2006.MA Jing-hai.Study on the Seismic Performance of Partially Concrete-filled Steel Box Bridge Piers[D].Nanjing:Hohai University,2006.
    [16]王跃东.部分內填混凝土箱型截面钢桥墩的力学性能研究[D].上海:上海交通大学,2011.WANG Yue-dong.Research on the Mechanical Behavior of Partially Concrete-filled Steel Box-section Bridge Piers[D].Shanghai:Shanghai Jiao Tong University,2011.
    [17]王占飞,张海,张敏江,等.部分填充钢管混凝土桥墩抗震性能的数值分析[J].沈阳建筑大学学报:自然科学版,2008,24(6):949-953.WANG Zhan-fei,ZHANG Hai,ZHANG Min-jiang,et al.Analytical Study on Seismic Performance of Partially Concrete-filled Steel Bridge Pier[J].Journal of Shenyang Jianzhu University:Natural Science,2008,24(6):949-953.
    [18]臧华,刘钊,李红英,等.钢管混凝土桥墩抗震性能试验研究[J].防灾减灾工程学报,2010,30(4):442-446.ZANG Hua,LIU Zhao,LI Hong-ying,et al.Experimental Study on Seismic Performance of Concretefilled Steel Bridge Piers[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(4):442-446.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心