可液化场地桥梁群桩基动力反应振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对上覆0.3m粘土层、下伏1.2m饱和砂层的可液化场地,采用2×2群桩-低承台-独柱墩结构,完成了可液化场地桥梁群桩基动力反应振动台试验。结果表明:随着埋深增加,土体孔压、加速度和位移趋于减小,随着输入频率的增大,土体孔压和加速度增大,土体位移则减小;桩的加速度和弯矩反应自下而上呈现增大趋势,桩的弯矩在承台处达到最大值,且随着输入频率的增大而减小;随着埋深的增加,桩上土反力和桩-土相对位移减小,土体模量增大;随着输入频率的增大,土体模量及耗能变小。
Shaking table tests on dynamic responses of pile group foundations for bridge was performed on 2×2pile group-low pile cap-single column pier system in liquefiable ground with 0.3moverlying clay layer and 1.2munderlying saturated sand layer.The test results show as follows:Firstly,the pore pressure,acceleration and displacement of soil mass decreases with increase of depth and as the input frequency increases,the pore pressure and acceleration of soil mass increase,but the soil mass displacement decreases.Secondly,the acceleration and bending moment of the pile increase from bottom to top,and the pile bending moment reaches its maximum near pile cap.As the input frequency increases,the pile bending moment decreases.Finally,with increase of depth,soil pressure and soil-pile relative displacement decrease and soil modulus presents increasing trend.Soil modulus and energy dissipation decrease as the input frequency increases.
引文
[1]唐亮,凌贤长,徐鹏举,等.可液化场地桥梁群桩-独柱墩结构地震反应振动台试验研究[J].土木工程学报,2009,42(11):102-108.Tang L,Ling X Zh,Xu P J,et al.Shaking table test for seismic response of pile-supported bridge structure with single-column pier in liquefiable ground[J].China Civil Engineering Journal,2009,42(11):102-108.
    [2]Brown D A,Morrison C,Reese L C.Lateral load behavior of pile group in sand[J].Journal of Geotechnical Engineering,1988,114(11):1261-1276.
    [3]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.Ling X Zh,Wang D Sh.Study on shaking table test for seismic interaction of pile-soil-bridge structure in case of soil liquefaction caused by earthquake[J].Earthquake Engineering and Engineering Vibration,2002,22(4):53-59.
    [4]Tokimatsu K,Suzuki H.Pore water pressure response around pile and its effects on p—y behavior during soil liquefaction[J].Soil and Foundations,2004,44(6):101-110.
    [5]Motamed R,Towhata I.Shaking table model tests on pile groups behind quay walls subjected to lateral spreading[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(3):477-489.
    [6]Cubrinovski M,Ishihara K,Furukawazono K.Analysis of full-scale tests of piles in deposits subjected to liquefaction[C]∥2nd International Conference on Earthquake Geotechnical Engineering.Lisbon,Portugal:[s.n.],1999.
    [7]唐亮,凌贤长,徐鹏举,等.可液化场地高承台群桩-土-桥梁结构地震相互作用振动台试验[J].中国公路学报,2010,23(4):51-57.Tang L,Ling X Zh,Xu P J,et al.Shaking table test for seismic interaction of pile groups-soil-bridge structure with elevated cap in liquefiable ground[J].China Journal of Highway and Transport,2010,23(4):51-57.
    [8]Yao S,Kobayashi K,Yoshida N,et al.Interactive behavior of soil-pile-superstructure system in transient state to liquefaction by means of large shake table tests[J].Soil Dynamics and Earthquake Engineering,2004,24(5):397-409.
    [9]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(6):160-165.Jing L P,Yao Y Sh,Zheng Zh H.Large scale shaking table test study on liquefaction of saturated silty soil[J].Earthquake Engineering and Engineering Vibration,2007,27(6):160-165.
    [10]唐亮.液化场地桩-土动力相互作用p—y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010.Tang L.p—y model of dynamic pile-soil interaction in liquefying ground[D].Harbin:Harbin Institute of Technology,2010.
    [11]苏雷.可液化场地群桩-土动力相互作用p—y曲线研究[D].哈尔滨:哈尔滨工业大学,2011.Su L.p—ycurve of dynamic soil-pile group interaction in liquefying ground[D].Harbin:Harbin Institute of Technology,2011.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心