大型高墩通航渡槽墩身二级设防水准地震响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了研究大型高墩通航渡槽墩身的地震响应,以乌江构皮滩水电站大型渡槽为例,基于纤维单元模型的方法分析渡槽墩身结构地震响应的规律。结果表明:空槽状态地震作用E1和E2主要影响墩身结构的剪力和弯矩,且其数值与地震动加速度成正比;满槽状态地震响应对墩身结构的轴向力影响较大,墩身的轴向力是空槽状态下的1.08~1.45倍,但是剪力和弯矩变化不大;墩身越高轴向力在满槽状态动水作用下的地震响应变化幅度越小;满槽状态,在E1地震作用下墩身各潜在非弹性铰截面均未出现明显的塑性变形,保持在弹性状态,在E2地震作用下,墩身潜在非弹性铰产生大面积的塑性变形。这些二级设防应力分布特征有利于大型高墩渡槽墩身整体及局部的抗震能力设计。
In order to analyze the earthquake response of huge navigable flume with high piers,earthquake response pattern is analyzed in this paper based on the fiber element mode of huge navigable flume of Goupitan Hydropower Station in Wujiang. The analysis results showthat seismic excitation E1 and E2,both of which is proportional to the ground motion acceleration,have the main effect on shear stress and bending moment in the pier structure when no water is in the aqueduct. However,when the flume is filled with water,the earthquake response significantly affects the axial stress rather than shear or moment. The axial stress is 1. 08 ~ 1. 45 times that of no water. It also shows that,under the dynamic effect of water in flume the higher the pier is,the smaller axial stress change ratio is. With E1 effect,elastic state rather than plastic state is observed at potential non-elastic hinge joints in pier. With E2 effect,plastic deformation occurs in potential non-elastic cross-sections extensively. The distribution characteristics of huge navigable flume with high piers with Grade II seismic design is helpful for both overall and local seismic design.
引文
[1]EGUCHI R T,RONALD T.Lifelines-Ensuring the Reliability of Water Supply Systems During Natural Disasters[J].Standardization News,2012(8):24-27.
    [2]吴轶,莫海鸿,杨春.大型渡槽动力设计方法研究[J].计算力学学报,2006,23(6):778-782.
    [3]中华人民共和国交通运输部.JTG/T B02—01公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [4]王博,李杰.大型渡槽结构地震响应分析[J].土木工程学报,2001,34(3):29-34.
    [5]俞琦,陈语,王家林.桥梁抗震分析方法[J].重庆交通学院学报,2006,25(增1):32-34.
    [6]KOU Lei,BAI Yun.Under Earthquake Environment Finite Strip Method Application of Large-scale Aqueduct Structure Security Research[C]//2011 International Conference on Electric Technology and Civil Engineering.IEEE,2011:7067-7070.
    [7]秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报(工学版),2005,39(7):1003-1008.
    [8]王伟华.基于ADINA的大型渡槽流固耦合动力响应研究[D].南京:河海大学,2008.
    [9]吴轶,莫海鸿,杨春.大型矩形渡槽—水体耦合体系的动力性能分析[J].地震工程与工程振动,2004,24(4):137-142.
    [10]张磊,韩强,杜修力.基于纤维模型的高墩连续刚构桥地震行波效应分析[J].震灾防御技术,2009,4(3):312-320.
    [11]段邱华,楼梦麟,杨绿峰.槽内水深对渡槽—水体耦合结构抗震性能的影响[J].水利发电,2011,37(9):42-45.
    [12]李正农,周振纲,朱旭鹏.槽墩高度对渡槽结构水平地震响应的影响[J].地震工程与工程振动,2013,33(3):245-257.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心