隔震桥梁地震反应的最优主动控制力特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用经典二次型LQR主动控制算法,研究隔震桥梁支座处主动控制装置的控制力特性。研究表明:主动控制力主要表现为阻尼力;当采用适当的状态反馈控制向量及控制权矩阵时,主动控制力与支座的速度基本接近线性关系。在此基础上,提出了基于主动控制算法的隔震桥梁最优被动粘滞阻尼器设计方法。被动粘滞阻尼器的最优阻尼系数既可以由LQR的控制增益直接得到,也可以通过线性拟合在实际地震波作用下的主动控制力与速度的关系曲线得到,且二者的结果极为接近。进一步的仿真分析结果表明,优化的被动粘滞阻尼器完全可以达到主动控制的减震效果。
The characteristics of control force of an active device located between a bridge deck and a pier for an isolated highway bridge are first analyzed based on classical LQR(Linear quadratic regulator) control algorithm.It shows that the active control force mainly behaves as a damping force,and there is an approximate linear relationship between the force and velocity of the control device on the condition that the suitable state feedback and weighting matrix are adopted.On this basis,the method of designing optimal linear viscous dampers based on LQR control algorithm for seismically excited isolated bridges is proposed.The optimal viscous damping coefficient for a viscous damper can be either directly obtained from the control gain of LQR control or derived from the linear fitting of the relationship between the control force and velocity when the bridge is subjected to real seismic excitations.The parameters optimized from the two methods are quite close to each other.Effectiveness of the designed optimal passive control is further demonstrated by comparing the control performance with that of ideal active control based on numerical results.
引文
[1]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [2]Li J Z,Peng T B,Xu Y.Damage investigation ofgirder bridges under the Wenchuan earthquake andcorresponding seismic design recommendations[J].Earthquake Engineering and Engineering Vibration,2008,7(4):337—344.
    [3]Huang J S,Tseng Y S.Design formulations for sup-plemental viscous dampers to highway bridges[J].Earthquake Engineering and Structural Dynamics,2005,34:1 627—1 642.
    [4]李忠献,周莉,岳福青.城市桥梁粘滞阻尼器防地震碰撞分析与参数设计[J].地震工程与工程振动,2006,26(5):195—200.
    [5]王浩,李爱群,郭彤.超大跨悬索桥地震响应的综合最优控制研究[J].湖南大学学报(自然科学版),2006,33(3):6—10.
    [6]吴陶晶,李建中,管仲国.减隔震装置作用机理及其在大跨度连续梁桥中的应用[J].结构工程师,2009,25(4):102—107.
    [7]Erkus B,Abe M,Fujino Y.Investigation of semi-ac-tive control for seismic protection of elevated highwaybridge[J].Engineering Structure,2002,24:281—293.
    [8]阎石,张海.高架桥地震反应半主动控制分析[J].地震工程与工程振动,2003,23(6):169—173.
    [9]陈水生.高架桥梁地震响应模糊半主动控制[J].地震工程与工程振动,2005,25(6):165—171.
    [10]李忠献,岳福青,周莉.城市隔震高架桥梁地震反应的半主动控制[J].土木工程学报,2007,40(1):42—48.
    [11]陈政清,汪志昊.基于能量回收的土木工程结构振动控制[J].建筑科学与工程学报,2009,26(2):9—14.
    [12]汪志昊,陈政清.基于自供电磁流变阻尼器的隔震高架桥半主动控制[J].地震工程与工程振动,2010,30(1):126—133.
    [13]Kori J G,Jangid R S.Semi-active control of seismi-cally isolated bridges[J].International Journal ofStructural Stability and Dynamics,2008,8(4):547—568.
    [14]Gluck N,Reinhorn A M,Gluck J,et al.Design ofsupplemental dampers for control of structures[J].ASCE Journal of Structural Engineering,1996,122(12):1 394—1 399.
    [15]Levy R,Lavan O.Quantitative comparison of opti-mization approaches for the design of supplementaldamping in earthquake engineering practice[J].ASCEJournal of Structural Engineering,2009,135(3):321—325.
    [16]Wang X Y,NI Y Q,KO J M,et al.Optimal designof viscous dampers for multi-mode vibration control ofbridge cables[J].Engineering Structures,2005,27(5):792—800.
    [17]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [18]Li H,Ou J P.A design approach for semi-active andsmart base-isolated buildings[J].Structural Controland Health Monitoring,2006,13(2-3):660—681.
    [19]张春巍,欧进萍.结构振动AMD控制系统主动控制力特征指标与分析[J].工程力学,2007,24(5):1—9.
    [20]Jangid R S,Kunde M C.Effect of pier and deck flexi-bility on the seismic response of isolated bridges[J].ASCE Journal of Bridge Engineering,2006,11(1):109—121.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心