地震信号谱分解匹配追踪快速算法及其应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
提出了地震信号谱分解的两步法匹配追踪(MP)算法。该方法根据最优小波的时间延迟,采用多点同时搜索的方式,在不损失MP算法精度的同时使运算效率得到了提高。阐述了基于Ricker小波MP算法的基本原理,给出了两步法MP快速算法的实现步骤。基于理论模型,讨论了MP算法谱分解的效果,并与Gabor变换和小波变换的谱分解效果进行了对比分析;利用谱分解的峰值瞬时频率进行了薄层反演,与常规薄层反演算法的对比表明,该方法对储层上、下界面反射系数的变化不敏感。在某地区,利用两步法MP快速算法对实际地震记录进行了谱分解,并基于由谱分解得到的不同频率的切片,分析了含气储层下方的影子效应,结果表明影子效应直接指示了烃类的存在。
A two-step matching pursuit(MP)algorithm of seismic signal spectral decomposition was presented,which is based on the timedelay of the optimal wavelet,by multi-points simultaneous searching -style,to improve the operation efficiency without losing algorithm accuracy.Then the principle of MP algorithm based on Ricker wavelet was elaborated,and the processing workflow of two-step MP algorithm was given.Based on theoretical model,the effects of spectral decomposition by MP algorithm was discussed,and compared to the spectral decomposition results of Gabor transform and wavelet transform.The peak instantaneous frequency of spectral decomposition was utilized for thin-bed inversion,the comparison with the conventional thin-bed inversion algorithms shows that the algorithm is not sensitive to the variation of reflection coefficient of reservoir top and bottom interface.Finally,the two-step MP algorithm was applied to spectral decomposition of field data,meanwhile, based on the slices of different frequency,the gas shadow phenomenon below gas-bearing reservoir was analyzed,the results show that shadow phenomenon can directly indicate the existence of hydrocarbon.
引文
[1]Partyka G,Gridley J,Lopez J.Interpretational application of spectral decomposition in reservoir characterization [J].The Leading Edge,1999,18(3): 353-360
    [2]Marfurt K J,Kirlin R L.Narrow-band spectral analysis and thin-bed tuning[J].Geophysics,2001,66 (4):1274-1283
    [3]Castagna J P,Sun S,Siegfried R W.Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J].The Leading Edge,2003,22(2):120-127
    [4]Sinha S,Routh P S,Anno P D,et al.Spectral decomposition of seismic data with continuous-wavelet transforms[J].Geophysics,2005,70(6):19-25
    [5]Li Y D,Zheng X D.Spectral decomposition using Wigner-Ville distribution with applications to carbonate reservoir characterization[J].The Leading Edge,2008,27(8):1050-1057
    [6]Sinha S,Routh P S,Anno P D,et al.Spectral decomposition of seismic data with continuous wavelet transform[J].Geophysics,2005,70(6):19-25
    [7]Mallat S,Zhang Z F.Matching pursuit with timefrequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415
    [8]Qian S,Chen D.Signal representation via adaptive normalized Gaussian functions[J].Signal Processing, 1994,36(1):1-11
    [9]Liu J,Marfurt K J.Matching pursuit decomposition using Morlet wavelet[J].Expanded Abstracts of 75~(th) Annual Internat SEG Mtg,2005,786-789
    [10]Wang Y H.Seismic time frequency spectral decomposition by matching pursuit[J].Geophysics,2007, 72(1):13-20
    [11]Liu J L,Wu Y F,Han D H,et al.Time-frequency decomposition based on Ricker wavelet[J].Expanded Abstracts of 74~(th) Annual Internat SEG Mtg, 2004,1937-1940
    [12]John H B,Wu Y F.Instantaneous spectral analysis: Time-frequency mapping via wavelet matching with application to contaminated-site characterization by 3D GPR[J].The Leading Edge,2007,26(8):1050- 1057
    [13]Taner M T,Koehler F,Sherrif R E.Complex seismic trace analysis[J].Geophysics,1979,44(11): 1041-1063
    [14]Choi H,Williams W J.Improved time-frequency representation of multicomponent signals using exponential kernels[J].IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(6):862-871
    [15]Widess M B.How thin is a thin bed?[J].Geophysics, 1973,38(6):1176-1180
    [16]王宇.基于谱分解的薄层反演方法研究[D].吉林:吉林大学,2007
    [17]杨林.地震频谱分解技术应用中有关问题的讨论[J].石油物探,2008,47(4):405-409
    [18]杨贵林.基于调谐频率与分频处理的高分辨率反演技术[J].石油物探,2006,45(3):242-244

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心