双向地震作用下浅埋软土电力隧道的动力响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了研究浅埋软土地下电力隧道结构在双向地震作用下的行为反应,采用大型岩土软件FLAC3D对浅埋软土地下电力隧道进行了数值模拟。建立了双向地震作用下软土电力电缆隧道的三维计算模型,考虑地下水位为地表以下1 m,计算了在水平和竖直地震荷载作用下,埋地电力隧道的动力响应,并对典型截面的典型点的速度、加速度、位移进行了监测。计算结果表明,在上海人工地震波作用下,电力隧道结构水平残余位移62.7 mm,竖向残余位移7 mm,隧道结构产生的永久变形为63 mm,隧道结构顶部和底部之间的水平相对位移52.1 mm,竖向相对位移几乎为0。地表水平残余变形16.4 mm,竖向残余变形7 mm。结构剪应力大小随着动荷载的增大而增大,而主应力随动荷载的输入而减小。数值分析结果表明,在软土地基下电力隧道产生剪切破坏的可能性较大,拉伸破坏和共振的概率较小。
In order to study the seismic response of power tunnel shallow buried in soft soil subjected to the horizontal and vertical earthquake,the large-scale geotechnical software FLAC3D was adopted for the numerical calculation.A three-dimensional model was established,and the ground water table is 1 m underground.The speed,acceleration and displacement of typical points of typical sections are monitored in the entire process of earthquake.Responses of buried power tunnel were calculated under bidirectional earthquake.The results shows that under Shanghai artificial seismic wave,the residual horizontal displacement of the tunnel is 62.7mm,and vertical displacement is 7 mm,and the permanent deformation of the tunnel is 63 mm.The relative horizontal displacement of the roof and bottom of the tunnel is 52.1 mm,but the relative vertical displacement of the roof and the bottom is nearly 0.The residual horizontal and vertical displacement of ground are 16.4 mm and 7 mm.The whole shear stress increases with the input of dynamic loads,while the principal stresses decrease with the input of dynamic loads.The natural frequency of tunnel is 6 Hz.In conclusion the probability of shear failure is large,and the probability of tensile and resonance of tunnel failure is small.
引文
[1]NEWMARK N M,HALL W J.Pipeline design to resist large fault displacement[C]//Proc of US Conf on Earthq Eng Oakland:ERRI,1975:416-425.
    [2]TAKADA S,TNANABE K.Three-dimensional seismic response analysis of buried continuous or jointed pipelines[J].J of Pressure Vessel Technology,1987,109(1):35-42.
    [3]AR IMAN T,MULESKI G E.A Review of the response of buried pipelines under seismic excitations[J].Earthquake Engineering and Structural Dynamics,1981,9:133-151.
    [4]DATTA S K,SHAH A H,WONG K C.Dynamic stresses and displacement in a buried pipe[J].J of Eng Mech,1984,110(12):1451-1466.
    [5]王海波,林皋.半无限弹性介质中管线地震反应分析[J].土木工程学报,1987,20(3):80-91.
    [6]徐植信.倾斜粘弹性覆盖层中P-SV波的广义射线法及物理模型实验[J].同济大学学报:自然科学版,1990,21(4):75-78.
    [7]梁建文.地下管线的地震反应和动态稳定[D].天津,天津大学,1991.
    [8]He Yu'ao,Liang Jiangwen.3-D Responses of Buried Pipeline Systems undo Earthquake Wave Propagation[C]//Proceedings of10th WCEE.Spain,1992.
    [9]Frank W Kan,ASCE M,Mehdi S Zarghamee,etc.Seismic Evaluation of Buried Pipelines,ASCE,2004.
    [10]国胜兵,赵毅,赵跃堂,等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间,2002,22(4):314-319.
    [11]唐益群,栾长青,张曦,等.地铁振动荷载作用下隧道土体变形数值模拟[J].地下空间与工程学报,2008,4(1):105-110.
    [12]JTJ 044—89公路抗震设计规范[S].
    [13]李海波,马行东,邵蔚.地震波参数对地下岩体洞室位移特性的影响分析[J].岩石力学与工程学报,2005,24(1):4627-4634.
    [14]Nassira Y,RAJAIE H,Faal R T.Three dimensional vibration analysis of a buried pipeline with slip conditions[J].Soil Dynamic and Earthquake Engineering,2011,31:1629-1639.
    [15]李洪煊,蔡新,武颖利.水下公路隧道结构地震响应分析[J].地下空间与工程学报,2010,6(5):952-957.
    [16]刘妮娜,门玉明.彭建兵.地震荷载作用下地铁盾构隧道动力响应分析[J].水文地质工程地质,2010,37(4):58-62.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心