地震动输入方向对铁路部分斜拉桥地震响应的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究竖向地震动分量对部分斜拉桥地震响应的影响及最不利地震动输入方向,以某跨度为(144+288+144)m的铁路部分斜拉桥为背景进行分析。采用MIDAS Civil建立全桥弹塑性有限元模型,采用Clough模型模拟塑性铰,由非线性动态时程法分析竖向地震动及水平地震动输入方向对部分斜拉桥弹塑性地震响应的影响。结果表明:考虑竖向地震动后桥墩屈服时刻提前;墩顶最大位移增大,墩底弯矩减小、轴力增大。三向地震动Ex+Ey+Ez和0.3Ex+0.3Ey+Ez两组合工况下,地震动最不利水平输入方向均为140°;El-Centro波作用时,两组合工况的最不利方向下,9号、10号墩福州和平潭两侧墩身的非线性位移延性比均增大,最大值达到3.38,不利于延性抗震。地震反应分析应当考虑竖向地震动、水平地震波最不利输入方向的影响。
To study the effect of the vertical seismic ground motion component on the seismic responses of extradosed bridge and the critical input directions of the ground motion,a railway extradosed bridge with span arrangement(144+288+144)m was cited as an example and was analyzed.The MIDAS Civil was used to establish the elastic-plastic finite element model for the whole bridge of the bridge,the Clough model was used to simulate the plastic hinges and the effect of the input directions of the vertical and horizontal seismic ground motion on the elasticplastic seismic responses of the bridge was analyzed by the nonlinear dynamic time-history method.The results of the analysis suggest that the yielding of the piers of the bridge takes place ahead of time when the vertical seismic ground motion is considered.The maximum displacement of the pier tops increases,the bending moment of the pier footings decreases and the axial force increases.Under the combination of the two kinds of the ground motion of the Ex+Ey+Ezin three directions and the 0.3Ex+0.3Ey+Ez,the critical input directions of the ground motion are all 140°.Under the action of the El-Centro seismic wave and the critical input directions of the combination,the nonlinear displacement ductility ratios of both the Fuzhou and Pingtan sides of the piers No.9and No.10 increase and the maximum value can reach 3.38 that is not advantageous to the ductility seismic resistance.In the seismic response analysis,the effect of the critical input directions of the vertical and horizontal seismic waves should be considered.
引文
[1]吴延伟.大跨度连续刚构桥罕遇地震下抗震分析[J].铁道工程学报,2010,(2):54-59.(WU Yan-wei.Seismic Analysis of Long Span Continuous Rigid-Frame Bridge Under Rarely Strong Earthquake[J].Journal of Railway Engineering Society,2010,(2):54-59.in Chinese)
    [2]王滔,郭恩栋,张丽娜,等.大跨斜拉桥地震动最不利输入方向分析[J].世界地震工程,2007,23(4):107-111.(WANG Tao,GUO En-dong,ZHANG Li-na,et al.Analysis of Critical Direction of Earthquake Input of a Long Span Cable-Stayed Bridge[J].World Earthquake Engineering,2007,23(4):107-111.in Chinese)
    [3]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题[J].同济大学学报,2003,31(6):631-636.(FAN Li-chu,NIE Li-ying,LI Jian-zhong.Discussion on Standard of Critical Angle of Seismic Wave Input in Seismic Analysis of Complicated Structures[J].Journal of Tongji University,2003,31(6):631-636.in Chinese)
    [4]朱晞,陈兴冲.混凝土桥墩的非线性分析[J].铁道学报,1993,15(1):87-93.(ZHU Xi,CHEN Xing-chong.Nonlinear Analysis of Concrete Bridge Piers[J].Journal of the China Railway Society,1993,15(1):87-93.in Chinese)
    [5]郭进,王君杰.基于累积损伤的弯矩-曲率强度退化滞回模型[J].同济大学学报(自然科学版),2013,41(12):1 767-1 774.(GUO Jin,WANG Jun-jie.Reinforced Concrete Strength Degradation Hysteretic Moment-Curvature Model Based on Cumulative Damage[J].Journal of Tongji University(Natural Science),2013,41(12):1 767-1 774.in Chinese)
    [6]王常峰,陈兴冲.桩基础桥梁非线性地震反应分析模型及试验研究[J].桥梁建设,2014,44(3):57-62.(WANG Chang-feng,CHEN Xing-chong.Analytical Model and Experimental Study of Nonlinear Seismic Response of Bridge with Pile Foundations[J].Bridge Construction,2014,44(3):57-62.in Chinese)
    [7]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.(FAN Li-chu,ZHUO Wei-dong.Ductility Seismic Design of Bridges[M].Beijing:China Communications Press,2001.in Chinese)
    [8]武芳文,赵雷.大跨度斜拉桥地震响应非线性时程分析[J].世界地震工程,2009,25(4):18-24.(WU Fang-wen,ZHAO Lei.Nonlinear Time-History Analysis of Seismic Response of a Long-Span CableStayed Bridge[J].World Earthquake Engineering,2009,25(4):18-24.in Chinese)
    [9]GB 50111-2006,铁路工程抗震设计规范[S].(GB 50111-2006,Code for Seismic Design of Railway Engineering[S].)
    [10]李小珍,雷虎军.基于多点激励的刚构-连续组合梁桥行波效应分析[J].桥梁建设,2012,42(6):33-38.(LI Xiao-zhen,LEI Hu-jun.Analysis of Traveling Wave Effect of Hybrid Bridge of Rigid-Frame and Continuous Girder Based on Multi-Support Excitation[J].Bridge Construction,2012,42(6):33-38.in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心