美国迈卡伦湿地河流主槽-洪泛区水力连通特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于先进的Ad H水动力学计算模型,以美国内华达州塔基河迈卡伦研究域为例,从主槽-洪泛区系统的流场特性、不同河道形态下的跨界流量分布以及粒子在系统内运动传输规律三个方面,详尽地分析洪水过程下主槽与洪泛区之间的水力交互连通关系。研究结果表明,在洪峰流量期间,有接近60%的洪峰流量从洪泛区经过,约为主槽流量的1.52倍;主槽-洪泛区之间的跨界流量交换方向和量级受到河流形态和洪峰流量的共同影响;粒子示踪统计结果表明绝大数(>85%)粒子能够至少一次穿过河流边界,揭示出主槽和洪泛区之间存在较强的水体交换,此外,粒子运动轨迹和停留时间分布特点反映主槽-洪泛区系统水力交互关系具有较强的时空分异特性。
Hydrological exchange between a river and its floodplain plays a critical role in maintaining river ecosystem. Herein, a state-of-art hydrodynamic model(Ad H) was applied in modeling flood events in the Truckee River at lower Mc Carran ranch in Nevada. The hydrologic connectivity between main channel and floodplains is examined in details through flow field characteristics, trans-boundary flux, and particle tracing analysis. Results reveal substantial spatial variations of main channel-floodplain flux exchanges in both magnitude and direction. During a flood peak, up to 60% of its total discharge flows into floodplain, or about 1.52 times as much as that in main channel. Trans-boundary flux can be affected by both the river morphology and discharge magnitude. Particle-tracing shows that a large majority of particles(>85%) passed over the boundaries for at least one time, revealing a strong flux exchange at the interface of main channel and floodplains during flood events. The particle trajectory and residence time distribution also reflected a spatial and temporal heterogeneity of hydraulic interactions in a main channel-floodplain system.
引文
[1]Ward J V,Tockner K,Schiemer F.Biodiversity of floodplain river ecosystems:ecotones and connectivity[J].Regulated Rivers:Research&Management,1999,15(1-3):125-139.
    [2]翟金良,何岩,邓伟等.河流-洪泛区环境系统特征的初步研究[J].水土保持通报,2006,26(3):34-40.ZHAI Jinliang,HE Yan,DENG Wei,et al.Preliminary study on main characteristics of river-floodplain environmental system[J].Bulletion of Soil and Water Conservation,2006,26(3):34-40.
    [3]冶运涛,李丹勋,王兴奎,等.汶川地震灾区堰塞湖溃决洪水淹没过程三维可视化[J].水力发电学报,2011,30(1):62-69.YE Yuntao,LI Danxun,WANG Xingkui,et al.3-D visualization of flood propagation caused by barrier lake breaching in the Wenchuan earthquake stricken areas[J].Journal of Hydroelectric Engineering.2011,30(1):62-69.(in Chinese)
    [4]余晓,李翀,王昊,等.额尔古纳河洪水淹没模拟及湿地植被变化分析[J].水利学报,2011,42(11):1308-1315.YU Xiao,LI Chong,WANG Min,et al.Simulation of flood inundation and analysis on dynamic variation of wetlands for Argunriver[J].Journal of Hydraulic Engineering,2011,42(11):1308-1315.
    [5]吴天蛟,杨汉波,李哲,等.基于MIKE11的三峡库区洪水演进模拟[J].水力发电学报,2014,33(2):51-57.WU Tianjiao,YANG Hanbo,LI Zhe,et al.Modeling of flood routing for Three Gorges reservoir area based on MIKE11[J].Journal of Hydroelectric Engineering,2014,33(2):51-57.(in Chinese)
    [6]Gorski K,Collier K J,Duggan I C,et al.Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system[J].Freshwater Biology,2013,58(7):1458-1470.
    [7]Burgess O T,Pine W E,Walsh S J.Importance of floodplain connectivity to fish populations in the Apalachicola River,Florida[J].River Research and Applications,2013,29(6):718-733.
    [8]Bowen Z H,Bovee K D,Waddle T J.Effects of flow regulation on shallow-water habitat dynamics and floodplain connectivity[J].Transactions of the American Fisheries Society,2003,132(4):809-823.
    [9]Zurbriigg R,Wamulume J,Kamanga R,et al.River-floodplain exchange and its effects on the fluvial oxygen regime in a large tropical river system(Kafue Flats,Zambia)[J].Journal of Geophysical Research,2012,117(G3):1-12.
    [10]Chen X,Chen L,Zhao J,et al.Modeling inundation of seasonally flooded wetlands at McCarran Ranch on Truckee River,USA[J].Natural Hazards and Earth System Science Discussion,2014,(2):3711-3740.
    [11]陈孝兵,赵坚,陈力.基于AdH模型的美国内华达州塔基河洪水数值模拟[J].水电能源科学,2014,32(9):67-70.CHEN Xiaobing,ZHAO Jian,CHEN Li.Numerical simulation of flood events of Truckee river in Nevada of USA based on AdH model[J].Water Resources and Power,2014,32(9):67-70.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心