考虑土-结构相互作用渡槽流固耦合体风振响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以排架渡槽为研究对象,分别建立考虑土-结构相互作用(SSI)效应和不考虑土-结构相互作用(SSI)效应下的三维渡槽-水流固耦合体风振计算模型,通过自回归滑动平均(ARMA)模型模拟脉动风,采用任意拉格朗日-欧拉(ALE)方法求解渡槽和水体的耦合相互作用问题,针对不同水深工况,分别计算分析渡槽流固耦合体系在风荷载随机动力作用下的动力响应。研究结果表明:考虑SSI效应使得渡槽结构横槽向抗风刚度降低,导致结构风振位移响应增大;渡槽结构各部位最大主应力随槽内水深增大而增大,考虑SSI效应渡槽结构主应力稍大于不考虑SSI效应渡槽结构主应力;在脉动风荷载作用下,水深是决定渡槽倾覆力矩和动水压力的控制因素,土-结构作用的影响较小。
Three-dimensional models of fluid-structure coupling system for bent-type aqueduct were established considering soil-structure interaction(SSI) and without considering soil-structure interaction respectively to simulate the wind-induced vibration response. The wind-induced vibration response of aqueduct-water coupling system was numerically computed by using the arbitrary Lagrangian-Eulerian(ALE) method. The fluctuating wind speed time series was simulated resorting to auto-regressive moving average(ARMA) model. The dynamic responses of fluid-structure interaction system with different water depth conditions under stochastic wind loads were calculated. The results show that as SSI is considered, the lateral wind stiffness of the aqueduct structure decreases, which results in the increase of the structural wind-induced vibration displacement responses. The maximum principal stress of the aqueduct structure increases with the increase of the water depth, and the principal stress of the aqueduct considering SSI is slightly greater than that of the aqueduct without considering SSI. Under the action of fluctuating wind loads, the water depth controls the overturning moment and dynamic water pressure of the structure, while the effect of soil-structure interaction on the structure is weaker.
引文
[1]李遇春,楼梦麟.排架式渡槽流-固耦合动力特性分析[J].水利学报,2000(12):31-37.LI Yuchun,LUO Menglin.Dynamic characteristics of fluid-structure interaction system for bent-type aqueduct[J].Journal of Hydraulic Engineering,2000(12):31-37.
    [2]李正农,楼梦麟,宋锦忠,等.U形渡槽槽体结构风载体形系数的风洞试验研究[J].空气动力学学报,2002,20(2):233-238,245.LI Zhengnong,LUO Menglin,SONG Jinzhong,et al.The wind tunnel test study on wind load shape coefficient of body structure for U shape[J].Acta Aerodynamica Sinica,2002,20(2):233-238,245.
    [3]吴轶,莫海鸿,杨春.排架-渡槽-水三维耦合体系地震响应分析[J].水利学报,2005,36(3):280-285.WU Yi,MO Haihong,YANG Chun.Seismic response of frame-supported large rectangular aqueduct-water 3-D coupling system[J].Journal of Hydraulic Engineering,2005,36(3):280-285.
    [4]吴轶,莫海鸿,杨春.大型矩形渡槽-水耦合体系的动力性能分析[J].地震工程与工程振动,2004,24(4):137-142.WU Yi,MO Haihong,YANG Chun.Dynamic characteristics of large rectangular aqueduct-water coupling system[J].Earthquake Engineering and Engineering Vibration,2004,24(4):137-142.
    [5]李忠献,黄健,张国忱.考虑土-结构相互作用的车桥系统耦合振动分析[J].天津大学学报,2005,38(12):1035-1041.LI Zhongxian,HUANG Jian,ZHANG Guochen.Coupled vibration analysis of train-bridge systems considering soil-structure interaction[J].Journal of Tianjin University,2005,38(12):1035-1041.
    [6]Penzien J,Scheffey C F,Parmelee R A.Seismic analysis of bridges on long piles[J].ASCE,1964,90(3):223-254.
    [7]张育乐,黄志文.有限元法和M法在桩土动力相互作用分析中的比较与探讨[J].江西水利科技,2009,35(3):189-192,203.ZHANG Yule,HUANG Zhiwen.Comparison and discussion of soil-pile dynamical interaction analysis between FEM and M method[J].Jiangxi Hydraulic Science&Technology,2009,35(3):189-192,203.
    [8]王春,王宏东.桩-土作用模型在桥梁设计中的研究与应用[J].工程与建设,2007,21(5):770-772.WANG Chun,WANG Hongdong.Study and application of soil-pile function model in bridge design[J].Engineering Construction,2007,21(5):770-772.
    [9]刘亮,张华.U形渡槽三维流固耦合体风振响应分析[J].河海大学学报(自然科学版),2011,39(4):421-425.LIU Liang,ZHANG Hua.Analysis of wind-induced vibration response of 3-D fluid-structure interaction system for U-shaped aqueduct.Journal of Hohai University(Natural Sciences),2011,39(4):421-425.
    [10]JTGD 63—2007,公路桥涵地基与基础设计规范[S].JTGD 63—2007,Code for design of ground base and foundation of highway bridges and culverts[S].
    [11]陈镕,薛松涛,王远功,等.土-结构相互作用对结构风振响应的影响[J].岩石力学与工程学报,2003,22(2):309-315.CHEN Rong,XUE Songtao,WANG Yuangong,et al.Effects of soil-structure interaction the responses of structure to wind-induced vibration[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(2):309-315.
    [12]Shin S,Lee W I.Finite element analysis of incompressible viscous flow with moving free surface by selective volume of fluid method[J].International Journal of Heat and Fluid Flow,2000,21(2):197-206.
    [13]Filipovic N,Mijailovic S,Tsuda A,et al.An implicit algorithm within the arbitrary Lagrangian-Eulerian formulation for solving incompressible fluid flow with large boundary motions[J].Computer Methods in Applied Mechanic and Engineering,2006,195(44):6347-6361.
    [14]GB 50009—2012,建筑结构荷载规范[S].GB 50009—2012,Load code for the design of building structures[S].
    [15]刘亮,张华,郜余伟.矩形渡槽流固耦合体系风致的动力性能[J].中南大学学报(自然科学版),2012,43(2):675-680.LIU Liang,ZHANG Hua,GAO Yuwei.Wind-induced vibration of fluid-structure interaction system for rectangular aqueduct[J].Journal of Central South University(Science and Technology),2012,43(2):675-680.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心