爆炸荷载作用下岩石的变形与破坏研究(Ⅱ)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
无论是矿山工程、隧道工程中钻孔爆破效率的提高、工程爆破领域爆破振动参数的预测,还是最近一系列高技术常规局部战争中钻地炸弹对地下坚固目标的破坏,在不考虑岩石中强爆炸引起的光子和电磁辐射等极端效应情况下,都亟待要求对岩石中爆炸引起的应力、变形及其它运动参数和破坏效应作出比较准确的评估。目前对此问题的研究尚只能达到大致的机理及景象的定性认识和描述,定量上的确定存在数量级的误差,尤其是爆炸和冲击的近区,误差更大。其原因在于岩石中爆炸产生的变形和破坏特征,不仅与作用时发生相应的物理及力学运动密切相关,而且强烈地受岩石自身构造缺陷水平及其变化的制约。本文概述了爆炸作用下岩石的动力变形与破坏研究之现状。研究中考虑了岩石的构造特点及其对基本力学性状的影响,并简述了其研究的新趋向。
This paper reviews the progress of dynamic deformation and failure effects of rock under explosion. The behavior of rock materials under intensive dynamic loading is a complex problem, but has important practical significance. Not only physical mechanical properties of rocks, but the loading pattern determine the behavior of rocks. Besides the study of macroscopic behavior of rocks by continuum mechanics, as a current trend, the study of microscopic behavior of rocks has been carried out intensively. The goal of the given study lies in study of the impact of physical mechanical properties of rocks and the loading speed on the deformation and fracture of rocks considerating micromacroscopic behavior. The microscopic physical kinetic mechanism of deformation and damage of materials is investigated firstly. The study shows that the deformation and damage process is the process for material particles to overcome energy barriers, the kinetic evolution equation of deformation and damage for different stress states are given,and Zhurkov′s formula,Alexandrov′s strain rate equation, damage evolution equations of Norton and Kachanov are also derived, hence their intrinsic relationship is shown. And at the same time the deformation and damage process is also a structural change process at different structural levels including micro, meso, and macroscopic levels. The changes at different levels have their own characteristics. At microscopic level, the deformation and damage process for polycrystalline materials is a kinetic process of generation and growth of dislocations. At mesoscopic level, the basic carriers of plastic flow are 3dimensional structural elements, the feature of their deformation is "shear plus rotation". At mesoscopic level, plastic deformation is related to the formation of dissipative substructures and the fragmentation of deformation, and fracture is the final stage of fragmentation of deformable bodies. At macroscopic level, the description of deformation and damage is based on continuum mechanics, but the contribution at the micro and mesoscopic levels must be considered. The contributions at the micro and mesoscopic levels may be considered in the governing equations by giving the plastic shear strain rate and the contribution to shear strength. At microscopic level, the shear strength of materials is determined by the evolution of dislocation continuum, but at mesoscopic level it is determined by the mesostructures and the formation of new mesoscopic substructures. Therefore in the modeling of large stressstrain curves, not only the evolution of internal microstructures, but also the formation of different substructures and their contributions to flow stress are considered. It is shown in the analysis that strengthstrain speed dependency is dominated by the thermally activated mechanism in lowest strain rate region. With the increasing of strain rate, viscous mechanism will dominate gradually. In the utmost strain rate region, the thermally activated mechanism dominates again. One model of strengthstrain speed dependence is suggested. One elasticplastic model and one MohrCoulomb model in consideration of strengthstrain speed dependence are given. In the last part of chapter constitutive relationship of porous elasticplastic materials is investigated. Based on the thermodynamic law, Derived form free energy function by effective strain method, the brief and relatively simple equations of state of porous elasticplastic materials under intensive dynamic loading are given, and also the equations of deviatoric deformation are given.
引文
[56] С.А.Христианович,Е.И.Шемякин.Одинамическойсжимаемостипрочныхгорныхпородах.[M].Новосиби-рск:Наука.1979.(中译本:固体动力破坏,1981,煤炭工业出版社).
    [57] 陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [58] Ю.В.Гриняев,Н.В.Чертова,В.Е.Панин.Динамическ-иеуравненияансамляприналичииразо-риентированныхсубструктур[J].ЖТФ,1998,68(9):134-135.
    [59] В.Е.ранин,Современныепроблемыпластичностиипрочноститвердыхтел[J]Изв.Вуз.Физика,1998,41(1):7-34.
    [60] Panin.Foundationsofphysicalmesomechanics[J].PhysicalMesomechanics,1998,1(1):5-20.
    [61] В.Е.Панин,Ю.В.Гриняев,В.Е.Егорушко.Спектрвозвужденныхсостоянийивехревоемеханическоеполевдеформируемомкристалле[J].Изв.Вуз.Физика,1987,30(1):36-51.
    [62] В.Е.Панин,В.А.Лихачев,Ю.В.Гриняев.Структурн-81ыеуровенидеформациитвердыхтел[M].Новосибирск:Наука,1985.
    [63] В.Е.Панин,Ю.В.Гриняевидругие.Структурныеуровенипластическойдеформациииразрушения[M].Новосибирск:Наука,1990.
    [64] 王明洋,严东晋,钱七虎.岩石单轴试验全程应力应变曲线讨论.岩石力学与工程学报,1998,17(1):101-106.
    [65] П.В.макаров.моделированиепроцесоовдеформациииразрушениянамезоуровне[J].MTT.1999(5):109-130.
    [66] 王明洋,戚承志,钱七虎,等.岩石变形和破坏基本力学问题[J].解放军理工大学学报,2002,3(3):33-37.
    [67] 王明洋,钱七虎.颗粒介质的弹塑性动态本构关系[J].固体力学学报,1995,16(2):213-219.
    [68] WangMingyang,QianQianhu.TheoreticalandEx-perimentalStudiesontheGranularMediumunderExplosiveLoading,Intel.Conf.OnComputationalmethodsinStruct,andGeotech.Engrg.1994,Hongkong,1136-1142.
    [69] П.Боринидругие.Окинетикеразрушенияметалловвсубмикросекундномдиапазонедолговечности[A].В:Про-чностьиударныеволны[M],Сборникнаучныхтрудов.Саров:РФЯЦ-ВНИИЭФ,1996.309-313.(Докла-дыАкадемииНаукиСССР,266,1982).
    [70] НиколаевскийВ.Н.Динамическаяпрочностьискорост-ьразрушения.Вкн:Удар,взрывиразрушение.М.:Мир,с.166-203.
    [71] 王明洋,赵跃堂,钱七虎.饱和砂土动力特性及数值方法研究[J].岩土工程学报,2002,24(6):737-742.
    [72] 陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.
    [73] 陈宗基,康文法.在岩石破坏和地震之前与时间有关的扩容[J].岩石力学与工程学报,1983,2(1):11-21.
    [74] 经福谦.实验物态方程导论[M].北京:科学出版社,1999.
    [75] ЭельдовичЯ.Б.,РайзерЮ.П.Физикаударнхволиивысокотемпературнхгидродинамическихявлений[M].М.,Физматгиз,1963,686c.(中译本:激波和高温流体动力学现象物理学,科学出版社,1985).
    [76] 杨桂通著.塑性动力学[M].北京:高等教育出版社,2000.8.
    [77] А.Г.Иванов,В.А.Огородников.Различаютсялихрупк-иеипластичныематериалыприотколе[A].В:Прочнос-тьиударныеволны[M],Сборникнаучныхтрудов.Саров:РФЯЦ-ВНИИЭФ,1996.309-313.(ПМТФ,1,1992).
    [78] 王明洋,戚承志,钱七虎.岩石中爆炸与冲击下的破坏研究[J].辽宁工程技术大学学报,2001,20(4):385-389.
    [79] 戚承志,钱七虎.考虑到时效的一维剥离破坏及损伤破坏机理[J].解放军理工大学学报,2000,1(5):1-6.
    [80] 王明洋,国胜兵,邓国强.岩石覆盖层抗震塌机理研究[J].解放军理工大学学报,2001,2(3):12-19.
    [81] Б.И.Тараторин.Прчностьконструкцийатомныхстаций[М].Москва:Энергоатоиздат,1989.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心