混凝土试件细观结构的数值模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文将常用混凝土级配曲线与三维富勒级配曲线作了对比分析,从而为基于瓦拉文公式的随机骨料模型对试件内截面进行细观结构的数值模拟提供了依据。在此基础上,采用双折线损伤演化模型描述混凝土细观各相弹性损伤退化,利用有限元方法进行了混凝土湿筛试件、全级配试件单轴受压和全级配混凝土三分点梁弯拉细观结构数值模拟。通过单轴受压数值试验讨论了同一级配不同骨料分布、有限元单元尺寸及试件尺寸对极限荷载计算结果的影响。结果显示:(1)同级配不同随机骨料分布的影响在试验结果统计范围之内;(2)为了充分反映混凝土细观特性的非均性,单元尺寸应小于最小骨料粒径的三分之一;(3)湿筛试件与全级配试件数值模拟结果验证了试件的尺寸效应。在全级配混凝土三分点梁弯拉试验的模拟计算中,讨论了界面单元、固化水泥砂浆基底强度及损伤参数对计算结果的影响。通过细观结构数值模拟,直观显示了混凝土试件单轴受压和三分点梁抗弯曲试验在不同加载阶段微裂缝产生、扩展直至失稳的过程,及其宏观应力-应变曲线的变化情况。基于有关文献资料给定的混凝土各相参数得到的数值模拟结果与试验统计结果相符。
The comparison of gradations of three commonly used concretes with the Fuller gradation reveals that they accord very well. It infers that the Walraven function can be used to generate the random aggregate model (RAM) by means of Monte-Carlo method. On this basis, concrete is taken as a type of three-phase composite material composed of mortar matrix, aggregates and bonds connecting the matrix and aggregates. Based on the RAM and bilinear damage model the nonlinear finite element is adopted to numerically simulate the propagation process of cracks and fracture configuration in wet-screened specimen and full grading specimen under axial compression and in the concrete trisection beams under bending load. It is found that: 1. the influence of different aggregate distributions with the same gradation on computation result is not significant; 2. the calculated ultimate load of the specimen is not effected by the element dimension which is smaller than one third of the smallest aggregate; 3. the macro-strength of concrete mainly depends on the strength and damage-evolving characteristics of the bonds connecting concrete mortar and aggregates. The computational results are in good agreement with the experimental data.
引文
[1] ZaitsevJV,WittmannFH.CrackPropagationinaTwo phaseMaterialSuchasConcrete[C].inFracture,Waterloo,Canada,ICF4,1977.3:1197-1203.
    [2] HerrmannHJ,HansenA,StephaneRoux.Fractureofdisorder,elasticlatticesintwodimensions[J].Phys.Rev.B.,1989,39:637-648.
    [3] SchlangenE,vanMierJGM.Latticemodelfornumericalsimulationofconcretefracture[A].Internationalconferenceondamfracture[C].Denver,Colorado,USA,Sep.,1991.512-527.
    [4] SchlangenE,GarbocaiEJ.Fracturesimulationsofconcreteusinglatticemodels:computationalaspects[J].Engng.Frac.Mech.,1997,57(2 3):319-322.
    [5] ChinaiaB,VervuurtA,vanMierJGM.Latticemodelevaluationofprogressivefailureindisorderedparticlecomposites[J].Engng.Frac.Mech.,1997,57(2 3):301-318.
    [6] AsaiM,TeradaK,IkedaK.Meso scopicconcreteanalysiswithalatticemodel[A].ProceedingoftheFourthInternationalConferenceonFractureMechanicsofConcreteandConcreteStructures[C].Cachan,France.FractureMechanicsofConcreteandConcreteStructuresEditedbyRen deBorst,2001.757-764.
    [7] 杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报,2002.(4):46-50.
    [8] 杨强,任继承,张浩.岩石中锚杆拔出试验的数值模拟[J].水利学报,2002,(12):68-73.
    [9] 杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂的数值模拟[J].工程力学,2003,20(1):117-120.
    [10] WalravenJC,ReinhardtHW.Theoryandexperimentsonthemechanicalbehaviorofcracksinplainandreinforcedconcretesubjectedtoshearloading[J].HERON,1991,26(1A):26-35.
    [11] 刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89.
    [12] 宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.132-178.
    [13] 黎保琨,等.碾压混凝土细观损伤断裂模型及其在坝工建设中的应用[R].北京:北京水利水电管理干部学院,2001.
    [14] 彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟[J].水利学报,2001,(6):19-22.
    [15] 黎保琨,彭一江.碾压混凝土试件细观损伤断裂的强度与尺寸效应分析[J].华北水利水电学院学报,2001,22(3):50-53.
    [16] 马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130.
    [17] 唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社,2003.24-122.
    [18] 马怀发.二维复杂域结构性三角形网格自动生成程序[J].工程力学,1996,增刊:489-493.
    [19] 余天庆,钱济成.损伤理论及其应用[M].北京:国际工业出版社,1993.132-155.
    [20] 吴科如,周建华.增强硬化水泥浆体-粗骨料界面结合对混凝土断裂能的影响[R].上海:同济大学,1987.52-57.
    [21] H rschT,WittmannFH.Three dimensionalNumericalConcreteappliedtoinvestigateeffectivepropertiesofcompositematerials[A].ProceedingoftheFourthInternationalConferenceonFractureMechanicsofConcreteandConcreteStructures[C].Cachan,France,FractureMechanicsofConcreteandConcreteStructuresEditedbyRenedeBorst,2001.57-64.
    [22] vanMierJGM.FractureProcessesofConcrete AssessmentofMaterialParametersforFractureModels[M].CRCPress,1997.253-264.
    [23] 中国水利水电科学研究院.高拱坝地震应力控制标准和抗震结构工程措施研究-高拱坝全级配混凝土动态试验研究[R].北京:中国水利水电科学研究院,2000.
    [24] 成都勘测设计院.高混凝土坝设计计算方法与设计准则[R].成都:成都勘测设计院,1990.157-180.
    [25] 于骁中,曹建国,郭桂兰.混凝土的二轴强度及其在拱坝设计中的应用[A].水利水电科学研究院论文集[C].北京:水利电力出版社,1984.17-23.
    [26] GlombJA,PatasPJ.对双轴压缩下轻质混凝土性质的研究[A].混凝土的强度和破坏译文集[C].中国水利水电科学院译,北京:水利出版社,1982.111-116.
    [27] 杨木秋,林泓.混凝土单轴受压受拉应力 应变全曲线的试验研究[J].水利学报,1992,(6):60-66.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心