尾砂级配的混沌优化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用分形理论研究分级尾砂的级配。计算国内外大量矿山尾砂材料的分形参数,研究尾砂的分形级配与其胶结强度的关系。采用神经网络建立尾砂胶结强度与水泥质量分数、料浆浓度、尾砂颗粒分维数、孔隙分维数及分维数相关率的知识库模型。研究结果表明,尾砂胶结强度与其分形级配相关;随着尾砂颗粒间孔隙分维数减小,充填体强度增高;尾砂分维数相关率越大,充填体强度越大。用所建立的神经网络知识库模型,利用Logistic迭代方程的混沌遍历特性,采用混沌优化方法研究使充填体达到最佳强度的选矿尾砂最优分级。根据采场脱水工艺,应用该方法,获得安庆铜矿选矿尾砂的最佳级配参数。工程应用结果显示,该方法年增加尾砂用量2.87万t,胶结充填体强度提高8%,为矿山年节约充填成本55.8万元。
Gradation of classifying tailings was researched with fractal theory. Fractal parameters of tailings material applied in a lot of domestic and overseas mines were calculated, and the relationship between the fractal gradation of classifying tailings and its cementing strength was studied. A knowledge bank embodying the relations between strength of cementing tailings and content of cement, concentration of slurry, fractal dimension of granule, fractal dimension of porosity, correlated coefficient of fractal dimension was established with neural network. The results show that the strength of cementing tailings is related to its fractal gradation. The strength of cementing tailings increases with the decrease of fractal dimension of porosity, and the higher the correlated coefficient of fractal dimension, the higher the strength of cementing tailings. According to the knowledge bank and chaotic travelling of Logistic iterative equation, the optimum gradation of mill tailings which can reach the optimum cementing strength was investigated using the method of chaotic optimization. According to dehydrating technology in stope, using the above method, the optimum gradation parameters of mill tailings in Anqing copper mine were obtained. The results of engineering application show that not only the amount of tailings is increased by (27800) per annum, but also the strength of cementing backfill is enhanced by 8%, and filling cost of (558000) yuan(RMB) per annum is saved.
引文
[1] Aubertin M, Bussiere B. Meeting environmental chal-lenges for mine waste management [J]. GeotechnicalNews,2001,19(3):2126.
    [2] Mchaina D M, Januszewski S, Hallam R L. Develop-ment of an environmental impact and mitigation assess-ment program for a tailings storage facility stability up-grade [J]. International Journal of Surface Mining,Reclamation and Environment,2001,15(2):123140.
    [3] Hossein M, Hassani F P. Hydro-mechanical evalua-tion of stabilized mine tailings [J]. EnvironmentalGeology,2002,41(7):749759.
    [4] Burd B J. Evaluation of mine tailings effects on a ben-thic marine infaunal community over 29 years [J]. Ma-rine Environmental Research,2002,53(5):481519.
    [5]卢平.制约胶结充填采矿法发展的若干充填体力学问题[J]黄金,1994,15(7):1822.LU Ping. A few points about the mechanics of backfilling which restrain the development of cementingback-filling method [J]. Gold,1994,15(7):1822.
    [6] Bloss M, Revell M. Cannington paste fill system-chieving demand capacity [A]. MassMin 2000[C].Brisbane: Australian Institute of Mining and Metal-lurgy Publication,2000.713719.
    [7] Grant D, Dekruijff S. Mount Isa Mines-1100 orebody-35 years on [A]. In: Sandvik, Tamrock, Dyno N,eds. MassMin 2000[C]. Brisbane: Australian Institu-te of Mining and Metallurgy Publication,2000.591600.
    [8]彭续承.充填理论及应用[M].长沙:中南工业大学出版社,1998.PENG Xu-cheng. Backfill theory and its application[M]. Changsha: Central South University of Technol-ogy Press,1998.
    [9]刘同友.充填采矿技术与应用[M].北京:冶金工业出版社,2001.LIU Tong-you. Technology of backfill mining and itsapplication [M]. Beijing: Metallurgical IndustryPress,2001.
    [10]张钦礼,彭续承,王新民,等.尾砂坝内不同位置尾砂对充填体强度的影响[J].中南工业大学学报(自然科学版),1995,26(1):3033.ZHANG Qin-li, PENG Xu-cheng, WANG Xin-min,et al. Effect of the tailings on the strength piled onthe different sites in the tailings pond[ J]. Journal ofCentral South University of Technology ( NaturalScience),1995,26(1):3033.
    [11]余斌.影响尾砂胶结充填体强度的若干因素分析[J].河北冶金,2001,123:36.YU Bin. Analysis of factors to affect the strength ofcemented tailing grain fillings[J]. Hebei Metallurgy,2001,123:36.
    [12]周科平.充填体粒径分布对其强度影响的灰色关联分析[J].矿业研究与开发,1995,15(4):3235.ZHOU Ke-ping. A gray correlativity analysis of in-fluence of particle size distribution of filling bodystrength [ J ]. Mining Research and Development,1995,15(4):3245.
    [13] Helms W, Mersch T. Comparison of fine grained tal-ings with regard to their use for backfill[ J]. Journalfor Exploration, Mining and Metallurgy,1998,51(7):533540.
    [14]王谦源,胡京爽.混凝土集料的分形[J].岩土力学,1997,18(3):93100.WANG Qian-yuan, HU Jing-shuang. Grading of theconcrete aggregates and fractals [J]. Rock and SoilMechanics,1997,18(3):93100.
    [15]特科特D L.分形与混沌[M].陈禺页,郑捷,季颖,译.北京:地震出版社,1993.Turcotte D L. Fractal and chaos [M]. CHEN Yong,ZHENG Jie, JI ying, translate. Beijing: SeismPress,1993.
    [16]徐永富,孙婉莹,吴正根.我国膨胀土的分形结构研究[J].河海大学学报,1997,25(1):1723.XU Yong-fu, SUN Wan-yin, WU Zheng-gen. Onfractal structure of expansive soils in China [J].Journal of Hohai University,1997,25(1):1723.
    [17] Kobayashi M, Hattori M, Yamazaki H. Multidirec-tional associative memory with a hidden layer [J].Systems and Computers in Japan,2002,33(6):19.
    [18]施阳,李俊,王惠刚,等. MATLAB语言工具箱[M].西安:西北工业大学出版社,1999.SHI Yang, LI Jun, WANG Hui-gang,et al. MAT-LAB toolbox [M]. Xi an: Northwest University ofTechnology Press,1999.
    [19] Choi C, Lee J. Chaotic local search algorithm [J].Artificial Life and Robotics,1998,2(1):4147.
    [20]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613615.LI Bing, JIANG Wei-sun. Chaos optimization methodand its application [J]. Control Theory and Applica-tions,1997,14(4):613615.
    [21]邹恩,李祥飞,陈建国.混沌控制及其优化应用[M].长沙:国防科技大学出版社,2002.ZOU En, LI Xiang-fei, CHEN Jian-guo. Chaoticcontrol and its application in optimization [M].Changsha: National Defense University of Scienceand Technology Press,2002.
    [22]孙恒虎,黄玉诚,杨宝贵.当代胶结充填技术[M].北京:冶金工业出版社,2002.SUN Heng-hu, HUANG Yu-cheng, YANG Bao-gui.Contemporary technology of cemented backfill [M].Beijing: Metallurgical Industry Press,2002.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心