用户名: 密码: 验证码:
Quinclorac Resistance in Echinochloa crus-galli from China
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quinclorac Resistance in Echinochloa crus-galli from China
  • 作者:PENG ; Qiong ; HAN ; Heping ; YANG ; Xia ; BAI ; Lianyang ; YU ; Qin ; Stephen ; B.POWLES
  • 英文作者:PENG Qiong;HAN Heping;YANG Xia;BAI Lianyang;YU Qin;Stephen B.POWLES;Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences;Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities,Science and Technology;Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia;Jiangsu Academy of Agricultural Sciences;
  • 英文关键词:Echinochloa crus-galli;;quinclorac resistance;;quinclorac metabolism;;β-cyanoalanine synthase;;1-aminocyclopropane-1-carboxylic acid synthase;;1-aminocyclopropane-1-carboxylic acid oxidase;;rice
  • 中文刊名:Rice Science
  • 英文刊名:水稻科学(英文版)
  • 机构:Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences;Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities,Science and Technology;Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia;Jiangsu Academy of Agricultural Sciences;
  • 出版日期:2019-09-28
  • 出版单位:Rice Science
  • 年:2019
  • 期:05
  • 基金:financially supported by the National Natural Science Foundation of China (Grant Nos. 31701803 and 31772182);; the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3164) in China and the Australian Grains Research and Development Corporation (GRDC)
  • 语种:英文;
  • 页:44-52
  • 页数:9
  • CN:33-1317/S
  • ISSN:1672-6308
  • 分类号:S451.21
摘要
Echinochloa crus-galli is a major weed in rice fields in China, and quinclorac has been long used for its control. Over-reliance of quinclorac has resulted in quinclorac resistance in E. crus-galli. Two resistant(R) E. crus-galli populations from Hunan, China were confirmed to be at least 78-fold more resistant to quinclorac than the susceptible(S) population. No difference in foliar uptake of 14 C-labelled quinclorac was detected between the R and S plants. However, a higher level of 14 C translocation and a lower level of quinclorac metabolism were found in the R plants. Basal and induced expression levels of β-cyanoalanine synthase(β-CAS) gene and β-CAS activity were not significantly different between the R and S plants. However, the induction expression of 1-aminocyclopropane-1-carboxylic acid oxidase(ACO1) gene by quinclorac treatment was evident in the S plants but not in the R plants. Quinclorac resistance in the two resistant E. crus-galli populations was not likely to be related to foliar uptake, translocation or metabolism of quinclorac, nor to cyanide detoxification via β-CAS. Thus, target-site based quinclorac signal reception and transduction and regulation of the ethylene synthesis pathway should be the focus for further research.
        Echinochloa crus-galli is a major weed in rice fields in China, and quinclorac has been long used for its control. Over-reliance of quinclorac has resulted in quinclorac resistance in E. crus-galli. Two resistant(R) E. crus-galli populations from Hunan, China were confirmed to be at least 78-fold more resistant to quinclorac than the susceptible(S) population. No difference in foliar uptake of 14 C-labelled quinclorac was detected between the R and S plants. However, a higher level of 14 C translocation and a lower level of quinclorac metabolism were found in the R plants. Basal and induced expression levels of β-cyanoalanine synthase(β-CAS) gene and β-CAS activity were not significantly different between the R and S plants. However, the induction expression of 1-aminocyclopropane-1-carboxylic acid oxidase(ACO1) gene by quinclorac treatment was evident in the S plants but not in the R plants. Quinclorac resistance in the two resistant E. crus-galli populations was not likely to be related to foliar uptake, translocation or metabolism of quinclorac, nor to cyanide detoxification via β-CAS. Thus, target-site based quinclorac signal reception and transduction and regulation of the ethylene synthesis pathway should be the focus for further research.
引文
Bajwa A A,Jabran K,Shahid M,Ali H H,Chauhan B S,Ehsanullah.2015.Eco-biology and management of Echinochloa crus-galli.Crop Prot,75:151-162.
    Chayapakdee P,Iwakami S,Kamidate Y,Uchino A,Fan L,Sunohara S,Matsumoto H.2017.Enhanced activity ofβ-cyanoalanine synthase does not confer quinclorac resistance in multiple-herbicide resistant Echinochloa phyllopogon.The 26th Asian-Pacific Weed Science Society Conference,Weed Science for People,Agriculture and Nature.Kyoto,Japan.
    Chen G Q,Wang Q,Yao Z W,Zhu L F,Dong L Y.2016.Penoxsulam-resistant barnyardgrass(Echinochloa crus-galli)in rice fields in China.Weed Biol Manag,16(1):16-23.
    Chen J Y,Yu Q,Owen M,Han H P,Powles S.2018.Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population.Pest Manag Sci,74:925-932.
    Chen T,Zhang S L,Zhao L,Zhang Y D,Zhu Z,Zhao Q Y,Zhou LH,Yao S,Zhao C F,Liang W H,Wang C L.2018.Development and verification of a functional marker associated with resistance to ALS inhibitor herbicide.Chin J Rice Sci,32(2):137-145.(in Chinese with English abstract)
    Christoffoletti P J,de Figueiredo M R A,Peres L E P,Nissen S,Gaines T.2015.Auxinic herbicides,mechanisms of action,and weed resistance:A look into recent plant science advances.Sci Agric,72(4):356-362.
    Fipke M V,Vidal R A.2016.Integrative theory of the mode of action of quinclorac:Literature review.Planta Dan,34(2):393-402.
    Gao Y,Pan L,Sun Y,Zhang T,Dong L Y,Li J.2017.Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crus-galli var.zelayensis.Pestic Biochem Physiol,143:231-238.
    Gao Y,Li J,Pan X K,Liu D R,Napier R,Dong L Y.2018.Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid(ACC)synthase and ACC oxidase genes in Echinochloa crus-galli var.zelayensis.Pestic Biochem Physiol,146:25-32.
    Grossmann K,Kwiatkowski J.1993.Selective induction of ethylene and cyanide biosynthesis appears to be involved in the selectivity of the herbicide quinclorac between rice and barnyard grass.J Plant Physiol,142(6):457-466.
    Grossmann K,Kwiatkowski J.1995.Evidence for a causative role of cyanide,derived from ethylene biosynthesis,in the herbicide mode of action of quinclorac in barnyard grass.Pestic Biochem Physiol,51(2):150-160.
    Grossmann K,Kwiatkowski J.2000.The mechanism of quinclorac selectivity in grasses.Pestic Biochem Physiol,66(2):83-91.
    Grossmann K.2003.Mediation of herbicide effects by hormone interactions.J Plant Growth Regul,22(1):109-122.
    Grossmann K.2010.Auxin herbicides:Current status of mechanism and mode of action.Pest Manag Sci,66:113-120.
    Gleason C,Foley R C,Singh K B.2011.Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.PLoS One,6(3):e17245.
    Guo L B,Qiu J,Ye C Y,Jin G L,Mao L F,Zhang H Q,Yang X F,Peng Q,Wang Y Y,Jia L,Lin Z X,Li G M,Fu F,Liu C,Chen L,Shen E H,Wang W D,Chu Q J,Wu S Y,Wu S L,Xia C Y,Zhang Y F,Zhou X M,Wang L F,Wu L M,Song W J,Wang Y F,Shu Q Y,Aoki D,Yumoto E,Lou Y G,Qian Q,Yamguchi H,Yamane H,Kong C H,Timko M P,Bai L Y,Fan L J.2017.Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed.Nat Commun,8:1031.
    Heap I.2018.International survey of herbicide resistant weeds.http://www.weedscience.com.27 July 2018.
    Hoyerova K,Hosek P,Quareshy M,Li J,Klima P,Kubes M,Yemm A A,Neve P,Tripathi A,Bennett M J,Napier R M.2018.Auxin molecular field maps define AUX1 selectivity:Many auxin herbicides are not substrates.New Phytol,217(4):1625-1639.
    Lamoureux G L,Rusness D G.1995.Quinclorac absorption,translocation,metabolism,and toxicity in leafy spurge(Euphorbia esula).Pestic Biochem Physiol,53(3):210-226.
    Le Clere S,Wu C X,Westra P,Sammons R D.2018.Crossresistance to dicamba,2,4-D,and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene.Proc Natl Acad Sci USA,115(13):2911-2920.
    Li G,Xu M F,Chen L P,Cai L M,Bai L Y,Wu C X.2016.A novel EcGH3 gene with a different expression pattern in quincloracresistant and susceptible barnyardgrass(Echinochloa crus-galli).Plant Gene,5:65-70.
    Lopez-Martinez N,de Prado R.1996.Fate of quinclorac in resistant Echinochloa crus-galli.In:Second International Weed Control Congress.Copenhagen,Denmark:Eurekamag:535-540.
    Lopez-Martinez N,Marshall G,de Prado R.1997.Resistance of barnyardgrass(Echinochloa crus-galli)to atrazine and quinclorac.Pest Manag Sci,51(2):171-175.
    Lovelace M L,Talbert R E,Hoagland R E,Scherder E F.2007.Quinclorac absorption and translocation characteristics in quincloracand propanil-resistant and-susceptible barnyardgrass(Echinochloa crus-galli)biotypes.Weed Technol,21(3):683-687.
    Ma G L,Liu D C,Liu X Y,Tang T,Peng Y J.2013.Resistance of barnyard grass(Echinochloa crus-galli)to quinclorac in double-harvest rice area in Hunan Province of China.Plant Dis Pests,4:23-27.
    Oerke E C,Dehne H W.2004.Safeguarding production-losses in major crops and the role of crop protection.Crop Prot,23(4):275-285.
    Rouse C E,Roma-Burgos N,Norsworthy J K,Tseng T M,Starkey C E,Scott R C.2018.Echinochloa resistance to herbicides continues to increase in Arkansas rice fields.Weed Technol,32(1):34-44.
    Sunohara Y,Matsumoto H.2004.Oxidative injury induced by the herbicide quinclorac on Echinochloa oryzicola vasing.and the involvement of antioxidative ability in its highly selective action in grass species.Plant Sci,167(3):597-606.
    Takahashi M,Umetsu K,Oono Y,Higaki T,Blancaflor E B,Rahman A.2017.Small acidic protein 1 and SCFTIR1 ubiquitin proteasome pathway act in concert to induce2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots.Plant J,89(5):940-956.
    Talbert R E,Burgos N R.2007.History and management of herbicide-resistant barnyardgrass(Echinochloa crus-galli)in Arkansas rice.Weed Technol,21(2):324-331.
    van Eerd L L,Stephenson G R,Kwiatkowski J,Grossmann K,Hall J C.2005.Physiological and biochemical characterization of quinclorac resistance in a false cleavers(Galium spurium L.)biotype.J Agric Food Chem,53(4):1144-1151.
    Walsh T A,Neal R,Merlo A O,Honma M,Hicks G R,Wolff K,Matsumura W,Davies J P.2006.Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis.Plant Physiol,142(2):542-552.
    Wright A A,Rodriguez-Carres M,Sasidharan R,Koski L,Peterson D G,Nandula V K,Ray J D,Bond J A,Shaw D R.2018.Multiple herbicide-resistant junglerice(Echinochloa colona):Identification of genes potentially involved in resistance through differential gene expression analysis.Weed Sci,66(3):1-8.
    Xu J Y,Lv B,Wang Q,Li J,Dong L Y.2013.A resistance mechanism dependent upon the inhibition of ethylene biosynthesis.Pest Manag Sci,69(12):1407-1414.
    Yang X,Yu X Y,Li Y F.2013.De novo assembly and characterization of the barnyardgrass(Echinochloa crus-galli)transcriptome using next-generation pyrosequencing.PLoS One,8(7):e69168.
    Yang X,Zhang Z C,Gu T,Dong M C,Peng Q,Bai L Y,Li Y F.2017.Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass(Echinochloa crus-galli L.).J Proteom,150:160-169.
    Yasuor H,Milan M,Eckert J W,Fischer A J.2012.Quinclorac resistance:A concerted hormonal and enzymatic effort in Echinochloa phyllopogon.Pest Manag Sci,68(1):108-115.
    Zhu J W,Wang J,DiTommaso A,Zhang C X,Zheng G P,Liang W,Islam F,Yang C,Chen X X,Zhou W J.2018.Weed research status,challenges,and opportunities in China.Crop Prot,doi.org/10.1016/j.cropro.2018.02.001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700