用户名: 密码: 验证码:
胡杨PeREM1.3过表达提高烟草耐盐性的机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco
  • 作者:张会龙 ; 武霞 ; 尧俊 ; 赵楠 ; 赵瑞 ; 李金克 ; 沈昕 ; 陈少良
  • 英文作者:Zhang Huilong;Wu Xia;Yao Jun;Zhao Nan;Zhao Rui;Li Jinke;Shen Xin;Chen Shaoliang;Beijing Advanced Innovation Center for Tree Breeding by Molecular Design,College of Biological Sciences and Biotechnology,Beijing Forestry University;Public Analysis and Testing Center,Beijing Forestry University;
  • 关键词:胡杨 ; remorin蛋白 ; 抗盐性 ; 活性氧 ; 转基因烟草
  • 英文关键词:Populus euphratica;;remorin protein;;salt tolerance;;reactive oxygen;;transgenic tobacco
  • 中文刊名:北京林业大学学报
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学林木分子设计育种高精尖创新中心北京林业大学生物科学与技术学院;北京林业大学实验室与设备管理处;
  • 出版日期:2019-01-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(31770643、31570587);; 北京市自然科学基金项目(6182030、6172024);; 教育部科学技术研究(科学技术类)项目(113013A);; 高等学校学科创新引智计划项目(111Project、B130007);; 中央高校基本科研业务费专项(2017ZY07)
  • 语种:中文;
  • 页:5-13
  • 页数:9
  • CN:11-1932/S
  • ISSN:1000-1522
  • 分类号:S792.11
摘要
【目的】盐害作为一类非生物胁迫严重危害了农作物的生存以及产量。Remorin作为一类植物特有的蛋白质在植物适应环境过程中具有重要功能。本研究克隆了胡杨remorin蛋白PeREM1. 3的编码基因PeREM1. 3,并研究PeREM1. 3基因在植物耐盐性中的作用。【方法】笔者将基因构件35S::PeREM1. 3转入模式植物烟草中,在盐胁迫条件下,通过生理生化的方法对表达PeREM1. 3的转基因烟草进行基因功能的分析。【结果】研究显示PeREM1. 3蛋白定位于细胞质膜上,其编码基因PeREM1. 3的开放阅读框(ORF)长600 bp,编码199个氨基酸。胡杨中PeREM1. 3能够响应盐胁迫和渗透胁迫表达上调。结果表明,在烟草中过表达PeREM1. 3明显地提高了耐盐性。过表达PeREM1. 3的烟草转基因株系中抗氧化物酶如SOD、POD和CAT活性显著提高,降低了活性氧水平,调控活性氧平衡。另外植物抗逆相关基因SOS1、HAK、NHA1、VAG1和PMA4的转录水平显著增高,调控K~+/Na~+平衡。【结论】这些结果说明PeREM1. 3蛋白通过维持植物的活性氧平衡和K~+/Na~+平衡来提高植物的耐盐性。
        [Objective]The tolerance to salt stress,which is a major abiotic stress,is critical to plant survival and productivity. Remorins are plant-specific proteins and play an important role in plant adaptation to adverse environments. In this study,the gene PeREM1. 3 coding for a remorin protein was cloned from Populus euphratica,and the role of PeREM1. 3 in plant salt tolerance was investigated.[Method]The gene constructs 35 S: : PeREM1. 3 was transferred to model plant tobacco to investigate the function of PeREM1. 3 in salt tolerance by physiological and biochemical methods. [Result]Studies showed that PeREM1. 3 protein localized on the plasma membrane. The 600 bp full-length of openreading frame( ORF) of PeREM1. 3 encoded a putative protein of 199 amino acids. The expression of PeREM1. 3 was up-regulated under salt and osmotic stress in Populus euphratica. The results showed that the expression of PeREM1. 3 increased the salt tolerance of tobacco. The activities of antioxidant enzymes such as SOD,POD and CAT significantly increased and decreased the ROS level to maintain ROS homeostasis in transgenic lines expressing PeREM1. 3 under salt stress. On the other hand, the transcriptional levels of plant stress-resistance related genes,such as SOS1,HAK,NHA1,VAG1 and PMA4,were significantly increased and then maintained the K~+/Na~+homeostasis in transgenic plants.[Conclusion]The above experimental data indicate that remorin protein could maintain ROS and K~+/Na~+homeostasis and then enhance plant salt tolerance.
引文
[1] Jacinto T,Farmer E E,Ryan C A. Purification of potato leaf plasm a membrane protein pp34, a protein phosphorylated in response to oligogalacturonide signals for defense and development[J]. Plant Physiology,1993,103:1393--1397.
    [2] Peskan T,Westermann M,Oelmuller R. Identification of lowdensity triton X-100-insoluble plasma membrane microdomains in higher plants[J]. European Journal of Biochemistry,2000,267(24):6989--6995.
    [3] Mongrand S,More L J,Laroche J,et al. Lipid rafts in higher plant cells:purification and characterization of Triton X-100-insoluble microdomains from tobacco plasm a membrane[J].Journal of Biological Chemistry,2004,279(35):36277--36286.
    [4] Kreps J A,Wu Y,Chang H S,et al. Transcriptome changes for Arabidopsis in response to salt,osmotic,and cold stress[J]. Plant Physiology,2002,130(4):2129-2141.
    [5] Bray E A. Abscisic acid regulation of gene expression during waterdeficit stress in the era of the Arabidopsis genome[J]. Plant,Cell and Environment,2002,25:153-161.
    [6] Reddy A R,Ramakrishna W,Sekhar A,et al. Novel genes are enriched in normalized c DNA libraries from drought-stressed seedlings of rice(Oryza sativa L. subsp. indica cv. Nagina 22)[J]. Genome,2002,45:204--211.
    [7] Lin F,Xu S L,Ni W M,et al. Identification of ABA-responsive genes in rice shoots via c DNA microarray[J]. Cell Research,2003,13(1):59-68.
    [8] Malakshah S N,Rezaei M H,Heidary M,et al. Proteomics reveals new salt responsive proteins associated with rice plasma membrane[J]. Bioscience,Biotechnology,and Biochemistry,2007,71(9):2144--2154.
    [9] Gui J,Zheng S,Liu C,et al. OsREM4. 1 interacts with Os SERK1to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice[J]. Developmental Cell,2016,38:201-213.
    [10]张一南,王洋,张会龙,等.过表达胡杨PeRIN4基因拟南芥提高质膜H+-ATPase活性和耐盐性[J].北京林业大学学报,2017,39(11):1--8.Zhang Y N, Wang Y, Zhang H L,et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University,2017,39(11):1--8.
    [11] Sun J,Wang M J,Ding M Q,et al. H2O2and cytosolic Ca2+signals triggered by the PM H+-coupled transport system mediate K+/Na+homeostasis in Na Cl-stressed Populus euphratica cells[J]. Plant,Cell and Environment,2010,33:943-958.
    [12] Sun J,Li L S,Liu M Q,et al. Hydrogen peroxide and nitric oxide mediate K+/Na+homeostasis and antioxidant defense in Na Clstressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture,2010,103(2):205--215.
    [13] Ding M Q,Hou P C,Shen X,et al. Salt-induced expression of genes related to Na+/K+and ROS homeostasis in leaves of saltresistant and salt-sensitive poplar species[J]. Plant Molecular Biology,2010,73:251--269.
    [14] Chen S L,Polle A. Salinity tolerance of Populus[J]. Plant Biology,2010,12:317--333.
    [15] Sun J,Chen S L,Dai S X,et al. Na Cl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and saltsensitive poplar species[J]. Plant Physiology,2009,149:1141-1153.
    [16] Wang R G,Chen S L,Ma H,et al. Genotypic differences in antioxidative stress and salt tolerance of three poplars under salt stress[J]. Frontiers of Forestry in China,2006,1:82--88.
    [17] Kraus T E,Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology,1994,35:45-52.
    [18] Abbott A G,Ainsworth C C,Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system(esterase)[J]. Theoretical and Applied Genetics,1984,67:469--473.
    [19] Shen Z D,Yao J,Sun J,et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science,2015,235:89--100.
    [20] Sylvain R,Emmanuelle B,David L,et al. Remorin,a solanaceae protein resident in membrane rafts and plasmodesmata,impairs potato virus X movement[J]. The Plant Cell,2009,21:1541-1555.
    [21] Wang R G,Chen S L,Zhou X Y,et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to Na Cl stress[J]. Tree Physiology,2008,28:947-957.
    [22] Mittler R,Vanderauwera S,Gollery M,et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9:490--498.
    [23] Zhu M,Shabala L,Cuin T A,et al. Nax loci affect SOS1-like Na+/H+exchanger expression and activity in wheat[J]. Journal of Experimental Botany,2016,67:835--844.
    [24] Zhu J K. Regulation of ion homeostasis under salt stress[J].Current Opinion in Plant Biology,2003,6:441--445.
    [25] Blumwald E. Sodium transport and salt tolerance in plants[J].Current Opinion in Cell Biology,2000,12(4):431--434.
    [26] Wu C A,Yang G O,Meng Q W,et al. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+antiporter plays an important role in salt stress[J]. Plant Cell Physiology,2004,45(5):600-607.
    [27] Fukuda A,Nakamura A,Tagiri A,et al. Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice[J]. Plant Cell Physiology,2004,45(2):149-159.
    [28] Takahashi R,Nishio T,Ichizen N,et al. Cloning and functional analysis of the K+transporter,PhaHAK2,from salt-sensitive and salt-tolerant reed plants[J]. Biotechnology Letters,2007,9(3):501--506.
    [29]马挺军,向远寅,王沙生.盐胁迫对胡杨液泡膜H+-ATPase水解活性的影响[J].新疆农业大学学报,2003,26(2):43--48.Ma T J,Xiang Y Y,Wang S S. Effects of salt stress on the hydrolytic activity of H+ATPase from Populus euphratica[J].Journal of Xinjiang Agricultural University,2003,26(2):43--48.
    [30] Moriau L,Bogaerts P,Jonniaux J L,et al. Identification and characterization of a second plasma membrane H+-ATPase gene subfamily in Nicotiana plumbaginifolia[J]. Plant Molecular Biology,1993,21(6):955--963.
    [31] Wang M J,Wang Y,Sun J,et al. Overexpression of PeHA1enhances hydrogen peroxide signaling in salt-stressed Arabidopsis[J]. Plant Physiology and Biochemistry,2013,71(2):37-48.
    [32] Shabala S,Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum,2008,133(4):651-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700