用户名: 密码: 验证码:
基于环形光纤光栅应变传感器的管道泄漏监测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The research of pipeline leakage monitoring which based on annular fiber grating sensors
  • 作者:赵杰 ; 江洪波 ; 王桂萱
  • 英文作者:ZHAO Jie;JIANG Hongbo;WANG Guixuan;Dalian University,The Research and Development Center of Civil Engineering and Civil Technology;
  • 关键词:管道 ; 环形光纤光栅 ; 应变传感器 ; 泄漏监测
  • 英文关键词:pipeline;;annular fiber grating sensors;;strainsensors;;leakage monitoring
  • 中文刊名:自然灾害学报
  • 英文刊名:Journal of Natural Disasters
  • 机构:大连大学土木工程技术研究与开发中心;
  • 出版日期:2019-02-15
  • 出版单位:自然灾害学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(51738010)~~
  • 语种:中文;
  • 页:117-124
  • 页数:8
  • CN:23-1324/X
  • ISSN:1004-4574
  • 分类号:U178
摘要
为了获取一种更为经济有效的管道泄漏监测方法。本文在阐述环形光纤光栅应变传感器健康监测及定位原理基础上,实验模拟管道泄漏,采用环形光纤光栅传感器对相应工况进行实时监测。应用SM-130解调仪,结合Savitzky-Golay法对监测数据进行分析,得出环形光纤光栅传感器不仅能对管道泄漏反应迅速,而且能减少管道起始内压对监测结果的影响。整个实验中环形光纤光栅应变传感器对于管道的泄漏监测表现出灵敏度高、响应时间快、误报率低等特性,且能实时连续监测,是一种良好的泄漏监测方法。
        Inorder to obtain a more economical and effective method of pipeline leakage monitoring.This paper described the principle of health monitoring and positioning of annular fiber grating sensors, Simulated the pipeline leakage and used the annular fiber grating sensors to real-time monitoring in corresponding working condition. The detected data is analyzed with the demodulation of SM-130 and combined with Savitzky-Golay.The monitoring data not only proved that the annular fiber grating sensors respond quickly to piper line leakage but also reduce the impact from internal pressure. During the entire process of the experiment, the annual fiber grating sensors showed the characteristics that highly sensitive, quick response, little misinformation and continuous realtime monitoring. It is a pretty good way of leak detection.
引文
[1] 冉康杙, 邓玮. 城市管道燃气防泄漏监测技术分析[J]. 科技展望, 2017, 27(7): 243.RAN Kangyi, DENG Wei. The analysis of gas leakage monitoring in urban pipeline[J]. Technology and Expectation, 2017, 27(7): 243. (in Chinese)
    [2] 赵林, 王纪强, 李振. 光纤负压波管道泄漏监测系统[J]. 红外与激光工程, 2017, 46(7): 0722002-2.ZHAO Lin, WANG Jiqiang, LI Zhen. Optical fiber negative pressure wave pipeline leakage monitoring system[J]. Infrared and Laser Engineering, 2017, 46(7): 0722002-2. (in Chinese)
    [3] 贾子光. 基于光纤光栅应变箍的管道健康监测[D]. 大连: 大连理工大学, 2015.JIA Ziguang. Pipeline Health Monitoring Based on Fiber Grating Strain[D]. Dalian:Dalian University of Technology, 2015. (in Chinese)
    [4] 马建军. 天然气管道泄漏检测要点浅谈科技资讯[J]. 2011(8): 114-115.MA Jianjun. Natural gas pipeline leak detection key point of discussion[J]. Science and Technology Information, 2011(8):114-115. (in Chinese)
    [5] 曲红娟. 管道泄漏报警系统的研究[J]. 石油石化节能[J]. 2017, 27(7): 48.QU Hongjuan. Energy research on pipeline leakage alarm[J]. System Conservationin Petroleum & Petrochemical Industry, 2017, 27(7): 48. (in Chinese)
    [6] 中国石油天然气集团公司HSE指导委员会. 石油化工HSE风险管理[M]. 石油工业出版社, 2002.
    [7] 潘家华. 我国近期油气储运事业的发展及几点建议[Z]. 全国油气储运技术交流研讨会, 2002.
    [8] Lian M M, Wang S L, Zhou S D. et al. The semiperineable technology on natural gas pipeline leak detection[C]//International Conferenceon Pipelinesand Trenchless Technology, 2012(1): 625-633.
    [9] 彭红伟. 输气管道泄漏诊断与定位技术试验研究[D]. 北京: 中国石油大学, 2009.PENG Hongwei. Experimental Research on the Leak Detection and Location for Gas Transmission Pipelines[D]. Beijing. China University of Petroleum, 2009. (in Chinese)
    [10] 李健, 陈世利, 黄新敬, 等. 长输油气管道泄漏监测与准实时检测技术综述[J]. 仪器仪表学报, 2016(8): 1747-1749.LI Jian, CHEN, Shili, HUANG Xinjing, et al. A review of leakage monitoring and quasi-real-time detection of oil and gas pipeline[J]. Chinese Journal of Scientific Instrument, 2016(8): 1747-1749. (in Chinese)
    [11] 李辉, 冯建国, 廉明明, 等. 油气管道泄漏监测与定位方法分析综述[J]. 中国石油和化工标准与质量, 2014(4): 117-118.LI Hui, FENG Jianguo, LIAN Mingming, et al. Analysis of oil and gas pipeline leakage monitoring and positioning method[J]. China Petroleum and Chemical Standard and Quality, 2014(4): 117-118. (in Chinese)
    [12] 任亮, 崔晓蕾, 姜涛. 基于光纤光栅应变传感器的油气管道腐蚀监测[J]. 石油工程建设, 2015, 41(3): 6-8.REN Liang, CUI Xiaolei, JIANG Tao, et al. Oil/Gas pipeline corrosion detection based on FBG strain sensor[J]. Petroleum Engineering Construction, 2015, 41(3): 6-8. (in Chinese)
    [13] GECH, WANGGZ, YEH. Analysis smallest detectable leakage flowrate of negative of the pressure wave-based leak detection systems for liquidpi pelines[J]. Computers and Chemical Engineering, 2008(32): 1669-1680.
    [14] 张智. 负压波检漏技术在输气管线中的应用[J]. 石油工业计算机应用, 2011(4): 23-25.ZHANG Zhi. The application of negative pressure wave leak detection technology in gas pipeline[J]. Petroleum Industrial Computer Applications, 2011(4): 23-25. (in Chinese)
    [15] 胡琼, 范世东. 液体管道负压波检漏技术的研究现状与发展趋势[J]. 管道技术与设备, 2009(4): 21-24.HU Qiong, FAN Shidong. Research status and development trend of liquid pipelineleak detection on negative pressure wave[J]. Pipeline Technique and Equipment, 2009(4): 21-24. (in Chinese)
    [16] 夏梦颖. 基于环向应变传感器的管道健康监测研究[D]. 大连: 大连理工大学, 2014.XIA Mengying. Pipeline Leakage and Corrosion Detection Based on FBG Hoop Strain Sensor[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
    [17] 蔡天净, 唐瀚. Savitzky—Golay平滑滤波器的最小二乘拟合原理综述[J]. 数字通讯, 2010: 63-65. CAI Tianjing, TANG Han. Overview of the least squares fitting principle of Savitzky-Golay smoothing filter[J]. Digital Communication, 2010: 63-65. (in Chinese)
    [18] 雷林平. 基于Savitzky-Golay算法的曲线平滑去噪[J]. 电脑与信息技术, 2014, 22(5): 30-31.LEI Linping. Curve smooth denoising based on Savitzky-Golay algorithm[J]. Computer and Information Technology, 2014, 22(5): 30-31. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700