用户名: 密码: 验证码:
双向掘进隧道游离SiO_2粉尘扩散规律模拟与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Analysis and Simulation of SiO_2 Dust Diffusion in Tunnel by Inclined Shaft
  • 作者:乔力伟 ; 蒋葛夫
  • 英文作者:QIAO Liwei;JIANG Gefu;School of Transportation and logistics,Southwest Jiaotong University;
  • 关键词:施工隧道 ; 双向掘进 ; 隧道通风 ; 游离SiO2粉尘浓度 ; 气固两相流
  • 英文关键词:tunnel construction;;inclined shaft;;ventilated tunnels;;concentration of free SiO2 dust;;solid-gas flow
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:西南交通大学交通运输与物流学院;
  • 出版日期:2018-12-27 16:03
  • 出版单位:环境科学研究
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(No.61403317,61703351);; 国家重点研发计划项目(No.2017YFB1200702)~~
  • 语种:中文;
  • 页:129-137
  • 页数:9
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:X731
摘要
为研究双掘进面施工隧道内游离SiO_2粉尘浓度演化特征与扩散规律,获取通风系统的合理设计参数,以斗篷山隧道为研究背景,利用Ansys-CFD有限元计算流体力学软件离散项模型对双向掘进隧道安装除尘设备前、后粉尘扩散轨迹及不同时间周期内粉尘浓度分布特点进行数值模拟,并对模拟结果与现场实测数据进行对比分析.结果表明:(1)衬砌台车对粉尘的扩散具有明显的阻碍效应,台车两侧游离SiO_2粉尘浓度值出现了明显的分界.(2)单纯压入式通风条件下,部分高浓度游离SiO_2粉尘在非爆破端循环停留时间较长,通风一段时间后少量高浓度的游离SiO_2粉尘穿过台车在非爆破端循环停留形成簇团效应,未进入斜井进行排放.(3)压入式通风设备和除尘系统联合作业后,非爆破端游离SiO_2粉尘浓度趋于0,联合作业900 s后,隧道正洞与斜井内游离SiO_2粉尘浓度基本降至8 mgm~3以下,达到规范要求.研究显示,采用离散项模型对双工作面施工隧道内游离SiO_2粉尘浓度演化特征与扩散规律的模拟是可行的.压入式通风设备与除尘系统联合作业条件下游离SiO_2粉尘快速进入斜井进行排放,隧道施工作业区内游离SiO_2粉尘浓度在短时间内大幅下降,通风过程中粉尘运行轨迹几乎不涉及隧道非爆破端,减少了对非爆破端的污染.
        Take tunnel Doupengshan as the research background,in order to study the evolution characteristics and diffusion rule of free SiO_2 dust concentration in the double heading tunnel,and to obtain reasonable designing parameters of ventilation system,the diffusion path and concentration distribution of dust were simulated in different time periods before and after dust removal equipment was installed by the discrete term model of Ansys-CFD(a FEM computational fluid dynamics software).Meanwhile,the simulation results were compared with the field measured data.The results indicate that:(1)Lining platform car had a certain obstructive effect on free SiO_2 dust,and there was a clear demarcation of the concentration of free SiO_2 dust on both sides of platform car.(2)Some high concentration free SiO_2 stayed for a relatively long time in non-blast zone,small amount of high concentration free SiO_2 passed through the platform car to form cluster effects in non-blast zone after a period of ventilation and was undischarged by shaft just under forced ventilation.(3)The concentration of free SiO_2 dust approximated to 0 in non-blast zone in the joint operation of forced ventilation and dust removal system,and the concentration of free SiO_2 dust was reduced to less than 8 mgm~3in the main tunnel and shaft after 900 s of the joint operation,which met the regulatory standard.The research result shows that:it was feasible to simulate the evolution characteristics and diffusion rule of free SiO_2 dust concentration in the double heading tunnel by the discrete term model.Under the joint operation of forced ventilation and dust removal system the free SiO_2 dust entered the shaft for discharge quickly and the concentration of free SiO_2 dust decreased sharply in construction area within a short period of time,and the diffusion path of dust almost did not reach the non-blast zone which reduces pollution to non-blast zone in tunnel.
引文
[1]孙忠强.公路隧道钻爆法施工粉尘运移规律及控制技术研究[D].北京:北京科技大学,2015:2.
    [2]中华人民共和国国家卫生健康委员会.2017年全国职业病报告情况[J].中国职业医学,2018,45(3):296.
    [3]梁永玲.水压爆破技术在隧道施工中的应用[J].山西建筑,2018(6):184-186.
    [4]钟学飘,朱志良,马争,等.2005—2013年全国职业病发病情况分析[J].实用预防医学,2015,22(7):858-859.
    [5]PARAJULI S P,ZOBECK T M,KOCUREK G,et al.New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments[J].Journal of Geophysical Research:Atmospheres,2016,121(4):1776-1792.
    [6]DEVARREWAERE W,HEIMBACH U,FOQU,D,et al. Wind tunnel and CFD study of dust dispersion from pesticide-treated maize seed[J].Computers&Electronics in Agriculture,2016,128:27-33.
    [7]BECK T W,SEAMAN C E,SHAHAN M R,et al.Open-air sprays for capturing and controlling airborne float coal dust on longwall faces[J].Mining Engineering,2018,70(1):42-48.
    [8]JURAEVA M,RYU K J,JEONG S H,et al.Influences of the trainwind and air-curtain to reduce the particle concentration inside a subway tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2016,52:23-29.
    [9]ZHAO W,ZHENG Z. On the incompressible nervier-stokes equations with damping[J]. Applied Mathematics,2013,4(1):652-658.
    [10]LEE K R,KIM W G,WOO S H,et al.Investigation of airflow and particle behavior around a subway train running in the underground tunnel[J].Aerosol Science and Technology,2016,50(7):10-13.
    [11]SEIKE M, KAWABATA N, HASEGAWA M. Quantitative assessment method for road tunnel fire safety:development of an evacuation simulation method using CFD-derived smoke behavior[J].Safety Science,2017,94:116-127.
    [12]CVJETIC,ALEKSANDAR S,LILIC,NIKOLA M,et al.Case study on ventilation method development for bar-boljare highway tunnels construction in Montenegro[J].Tehnika,2017,72(5):667-674.
    [13]WANG H,NIE W,CHENG W,et al. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel's fullymechanized working face[J].Advanced Powder Technology,2017,26(1):201-210.
    [14]GALEA K S,MAIR C,ALEXANDER C,et al. Occupational exposure to respirable dust,respirable crystalline silica and diesel engine exhaust emissions in the London tunneling environment[J].Annals of Occupational Hygiene,2016,60(2):263-269.
    [15]WEGGEBERG H,SOLVEIG F,BUHAGEN M,et al.Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work[J]. Journal of Occupational and Environmental Hygiene,2016,13(10):724-740.
    [16]ARASTEH H,SAEEDI G. Investigating the shape and size distribution of dust in mechanized longwall method in Tabas coal mine[J].Human and Ecological Risk Assessment:An International Journal,2017,23(1):27-39.
    [17]JOHN C,BEN H. A passive cooling wind catcher with heat pipe technology:CFD,wind tunnel and field-test analysis[J]. Applied Energy,2016,162(16):460-471.
    [18]CALAUTIT J K,CHAUDHRY H N,HUGHES B R. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment[J].Data in Brief,2015,5(1):424-428.
    [19]KAISER C,RICHARD H,SALLY S.CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices[J].Renewable Energy,2015,83(2):85-99.
    [20]YU H,CHENG W,PENG H,et al.An investigation of the nozzle's atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model[J].Advanced Powder Technology,2018,6(15):212-217.
    [21]ZHOU A T,WANG K,KIRYAEVA T A,et al.Regularities of twophase gas flow under coal and gas outbursts in mines[J].Journal of Mining Science,2017,53(3):533-543.
    [22]宋旭彪.压出式空气幕通风技术在隧道施工中的应用[J].现代隧道技术,2013,50(2):173-180.SONG Xubiao. Application of forced out air curtain ventilation in tunnel construction[J]. Modern Tunneling Technology,2013,50(2):173-180.
    [23]牛伟,蒋仲安,王晓珍,等.综放工作面粉尘浓度分布规律的数值模拟[J].中国矿业,2008,17(12):77-80.NIU Wei,JIANG Zhongan,WANG Xxiaozhen,et al. Numerical simulation of distribution regularities of dust concentration in fully mechanized top-coal caving face[J]. China Mining Magazine,2008,17(12):77-80.
    [24]周刚,张琦,白若男,等.大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J].中国矿业大学学报,2016,45(4):684-693.ZHOU Gang,ZHANG Qi,BAI Ruonan,et al.CFD simulation of airrespirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Minimg&Technology,2016,45(4):684-693.
    [25]李艳强,吴超,易斌,等.受限空间内粉尘流动的浓度分布模型及其数值模拟[J].中国安全科学学报,2007,17(10):50-55.LI Yanqiang,WU Chao,YI Bin,et al. Mathematical models and numerical simulation of concentration distribution of dust flowing in limited space[J].China Safety Science Journal,2007,17(10):50-55.
    [26]SHIH T H,LIOU W W,SHABBIR A,et al. A new k-εeddyviscosity model for high reynolds number turbulent flows:model development and validation[J].Computers&Fluids,1995,24(3):227-238.
    [27]闫晓惠,陈新,李华煜.基于标准和Realizable k-ε湍流模型的阶梯式溢洪道流的数值模拟[J].水利科技与经济,2015,21(10):29-31.YAN Xiaohui,CHEN Xin,LI Huayu. Numerical modeling of stepped spillway flow using the standard and Realizable k-εturbulence models[J]. Water Conservancy Science and Technology and Economy,2015,21(10):29-31.
    [28]白建平,范健强,王越,等.粉尘密度对20 L球罐内粉尘分散规律影响[J].中国安全生产科学技术,2017,13(10):37-42.BAI Jianping,FAN Jianqiang,WANG Yue,et al. Effect of dust density on dispersion laws of dust in 20 L spherical tank[J].Journal of Safety Science and Technology,2017,13(10):37-42.
    [29]谭洪,乐尚侃.铁路粉尘作业场所36种粉尘浓度质量分布特性研究[J].铁道劳动安全卫生与环保,1994,21(2):87-93.TAN Hong,LE Sangkan. the study of granule quality distribution feature in 36 kinds of dust[J]. Railway Labor Safety and Environmental Protection,1994,21(2):87-93.
    [30]中铁二局.贵广铁路岩溶隧道空气净化阶段报告[EB/OL].2011-12-16[2017-02-12]http://wenku. baidu. com/view/45e6b4cbab00b52acfc789eb172ded630b1c9864.
    [31]中华人民共和国行业标准.TB 10120—2002铁路瓦斯隧道技术规范[S].北京:中国铁道出版社,2003.
    [32]陈举师,蒋仲安.破碎硐室粉尘浓度空间分布规律的数值模拟[J].煤炭学报,2012,37(11):1865-1870.CHEN Jushi,JIANG Zhongan. Numerical simulation of spatial dust concentration distribution regularities in crushing chamber[J].Journal of China Coal Society,2012,37(11):1865-1870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700