用户名: 密码: 验证码:
长三角地区吸收性气溶胶时空分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-Temporal Distribution of Absorptive Aerosols in the Yangtze River Delta
  • 作者:赵楠 ; 曹梵诗 ; 田晴 ; 陈勇航 ; 刘琼 ; 黄艺伟 ; 王羽佳
  • 英文作者:ZHAO Nan;CAO Fan-shi;TIAN Qing;CHEN Yong-hang;LIU Qiong;HUANG Yi-wei;WANG Yu-jia;College of Environmental Science and Engineering,Donghua University;Institute of Desert Meteorology,China Meteorological Administration;
  • 关键词:吸收性气溶胶 ; 臭氧监测仪(OMI) ; 吸收性气溶胶光学厚度(AAOD) ; 时空分布 ; 黑碳 ; 长三角地区
  • 英文关键词:absorptive aerosol;;ozone monitoring instrument(OMI);;absorptive aerosol optical depth(AAOD);;spatial-temporal distribution;;black carbon;;Yangtze River Delta
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:东华大学环境科学与工程学院;中国气象局乌鲁木齐沙漠气象研究所;
  • 出版日期:2019-04-28 15:38
  • 出版单位:环境科学
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金重大项目(91644211);; 中央高校基本科研业务费专项(2232019D3-27)
  • 语种:中文;
  • 页:52-61
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X513
摘要
利用2008~2017年OMI/Aura OMAERUV L2气溶胶数据集,研究了近10年长三角地区吸收性气溶胶的时空分布特征.结果表明:①在时间分布上,长三角地区气溶胶光学厚度(AOD)与吸收性气溶胶光学厚度(AAOD)的年际变化趋势一致,均为先升后降,于2011年达最高值,分别为0. 702和0. 056.月际变化显示AAOD高值多发生在1、3和6月,11月到次年1月明显增加.②在空间分布上,长三角地区AAOD呈北高南低分布,AOD与AAOD分布相似,AAOD> 0. 05的高值区主要集中在安徽北部、江苏北部以及南京、杭州和金华等地区. AAOD与AOD季节空间分布均为春冬高,秋季较低,但二者不同的是,夏季AOD很大,AAOD却很小.长三角地区AAOD和AOD的年均空间分布与黑碳贡献量一致.
        Based on the ozone monitoring instrument( OMI)/Aura L2 OMAERUV data from 2008 to 2017,the spatial-temporal distribution of absorptive aerosols during the past 10 years were studied. The results are as follows. ① In the temporal distribution,the inter-annual variation of absorptive aerosol optical depth( AAOD) first increased and then decreased,reaching the highest value of0. 056 in 2011; this is consistent with the aerosol optical depth( AOD) of 0. 702 in the Yangtze River Delta. The inter-monthly variation shows that the high value of AAOD appeared mostly in January,March,and June and increased significantly from November to January. ② In the spatial distribution,the AAOD was higher in the north than in the south in the Yangtze River Delta,and the AOD was similar to the AAOD. High values of AAOD above 0. 05 were concentrated mainly in northern Anhui and Jiangsu provinces and in Nanjing,Hangzhou,and Jinhua. The seasonal spatial distribution of AAOD and AOD was higher in spring and winter and lower in autumn,although the AOD was very high and the AAOD was low in summer. The contribution of black carbon in the Yangtze River Delta was consistent with the annual spatial distribution of the AAOD and AOD.
引文
[1]余卫国,房世波,余学祥.中国卫星遥感气溶胶研究进展[J].能源环境护,2016,30(1):1-6.Yu W G,Fang S B,Yu X X. Research progress on satellite remote sensing of atmospheric aerosols of China[J]. Energy Environmental Protection,2016,30(1):1-6.
    [2]罗毅,邓琼飞,杨昆,等.近20年来中国典型区域PM2. 5时空演变过程[J].环境科学,2018,39(7):3003-3013.Luo Y,Deng Q F,Yang K,et al. Spatial-Temporal change evolution of PM2. 5in typical regions of China in recent 20 years[J]. Environmental Science,2018,39(7):3003-3013.
    [3]李莉,徐健,安静宇,等.长三角经济能源约束下的大气污染问题及对区域协作的启示[J].中国环境管理,2017,9(5):9-18.Li L,Xu J,An J Y,et al. The air pollution issues under the economic and energy constraint and their implications on the regional Joint-effort in the Yangtze River Delta Region[J].Chinese Journal of Environmental Management,2017,9(5):9-18.
    [4] Wang C. Impact of anthropogenic absorbing aerosols on clouds and precipitation:a review of recent progresses[J]. Atmospheric Research,2013,122:237-249.
    [5] Bond T C,Streets D G,Yarber K F,et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research:Atmospheres,2004,109(D14):D14203.
    [6] Gadhavi H,Jayaraman A. Absorbing aerosols:contribution of biomass burning and implications for radiative forcing[J].Annales Geophysicae,2010,28:103-111.
    [7]张鹏,王春姣,陈林,等.沙尘气溶胶卫星遥感现状与需要关注的若干问题[J].气象,2018,44(6):725-736.Zhang P,Wang C J,Chen L,et al. Current status of satellitebased dust aerosol remote sensing and some issues to be concerned[J]. Meteorological Monthly,2018,44(6):725-736.
    [8]王爽,巨天珍,谢顺涛,等.天水市紫外吸收性气溶胶时空动态的遥感监测[J].环境监测管理与技术,2018,30(1):46-49.Wang S,Ju T Z,Xie S T,et al. Temporal and spatial dynamic monitoring of tropospheric UV-absorbing aerosol in Tianshui based on remote sensing[J]. The Administration and Technique of Environmental Monitoring,2018,30(1):46-49.
    [9] IPCC. Climate change 2007:The physical science basis.Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2007. 153.
    [10] Zheng Y,Che H Z,Zhao T L,et al. Aerosol optical properties observation and its relationship to meteorological conditions and emission during the Chinese National Day and Spring Festival holiday in Beijing[J]. Atmospheric Research,2017,197:188-200.
    [11]于彩霞,杨元建,邓学良,等.基于CALIOP探测的合肥气溶胶垂直分布特征[J].中国环境科学,2017,37(5):1677-1683.Yu C X,Yang Y J,Deng X L,et al. Vertical distribution characteristics of aerosol optical properties on haze and clear day in Hefei based on CALIOP satellite measuring[J]. China Environmental Science,2017,37(5):1677-1683.
    [12]高星星,陈艳,张镭,等.华北地区气溶胶的季节垂直分布特征及其光学特性[J].兰州大学学报(自然科学版),2018,54(3):395-403.Gao X X,Chen Y,Zhang L,et al. Vertical distribution of seasonal aerosols and their optical properties over Northern China[J]. Journal of Lanzhou University(Natural Sciences),2018,54(3):395-403.
    [13]刘贞,张雪姣,郑有飞,等.基于CALIPSO对中国春季一次沙尘暴的研究[J].环境科学学报,2016,36(12):4315-4327.Liu Z, Zhang X J, Zheng Y F, et al. Spatio-temporal distribution and transport behavior of a dust event based on the CALIPSO in China[J]. Acta Scientiae Circumstantiae,2016,36(12):4315-4327.
    [14] Kumar A,Singh N,Anshumali,et al. Evaluation and utilization of MODIS and CALIPSO aerosol retrievals over a complex terrain in Himalaya[J]. Remote Sensing of Environment,2018,206:139-155.
    [15]王苑,邓军英,史兰红,等.基于气溶胶光学特性垂直分布的一次浮尘过程分析[J].环境科学,2014,35(3):830-838.Wang Y,Deng J Y,Shi L H,et al. A floating-dust case study based on the vertical distribution of aerosol optical properties[J].Environmental Science,2014,35(3):830-838.
    [16]林泓锦,都瓦拉,玉山,等.基于MODIS的内蒙古气溶胶时空分布特征分析[J].环境科学学报,2018,38(12):4573-4581.Lin H J,Du W L,Yu S,et al. Spatial-temporal characteristics of aerosol optical depth with MODIS data over Inner Mongolia[J]. Acta Scientiae Circumstantiae,2018,38(12):4573-4581.
    [17]胡俊,亢燕铭,陈勇航,等.基于MODIS_C006的乌鲁木齐10年气溶胶光学厚度变化特征[J].环境科学,2018,39(8):3563-3570.Hu J,Kang Y M,Chen Y H,et al. Analysis of aerosol optical depth variation characteristics for 10 years in Urumqi based on MODIS_C006[J]. Environmental Science,2018,39(8):3563-3570.
    [18]杨东旭,韦晶,钟永德.利用MODIS卫星资料反演北京地区气溶胶光学厚度[J].光谱学与光谱分析,2018,38(11):3464-3469.Yang D X,Wei J,Zhong Y D,et al. Aerosol optical depth retrieval over Beijing using MODIS satellite images[J].Spectroscopy and Spectral Analysis,2018,38(11):3464-3469.
    [19]袁兴明,邢立鹏,靳合波,等.基于MODIS AOD的山东地区PM2. 5反演[J].测绘与空间地理信息,2018,41(11):88-90,93.Yuan X M,Xing L P,Jin H B,et al. Estimation of PM2. 5over Shandong from MODIS AOD[J]. Geomatics&Spatial Information Technology,2018,41(11):88-90,93.
    [20] Jiang C,Xu Q,Gu Y K,et al. Spatial and temporal changes of aerosol optical depth and its driving factors based on MODIS in Jiangsu province[A]. In:ISPRS TC III Mid-term Symposium“Developments, Technologies and Applications in Remote Sensing[C]. Beijing:ISPRS Technical Commission III on Remote Sensing,2018. 645-649.
    [21]王海林,刘琼,陈勇航,等. MODIS C006气溶胶光学厚度产品在京津冀典型环境背景下的适用性[J].环境科学,2019,40(1):44-54.Wang H L,Liu Q,Chen Y H,et al. Applicability of MODIS C006 aerosol products in a typical environmental area of the Beijing-Tianjin-Hebei region[J]. Environmental Science,2019,40(1):44-54.
    [22]张芝娟,陈斌,王皓,等.利用OMI资料分析APEC期间吸收性气溶胶的时空分布特征[J].兰州大学学报(自然科学版),2017,53(1):93-100.Zhang Z J,Chen B,Wang H,et al. Spatial and temporal characteristic of absorbing aerosols during APEC based on OMI data[J]. Journal of Lanzhou University(Natural Sciences),2017,53(1):93-100.
    [23]王宏斌,张志薇,徐萌.基于地面和卫星观测的江苏地区污染物分布特征及其轨迹预报模型[A].见:中国环境科学学会. 2017中国环境科学学会科学与技术年会论文集(第一卷)[C].厦门:中国环境科学学会,2017. 10.
    [24]李龙,施润和,张璐,等.华东地区MODIS与OMI气溶胶光学厚度数据融合[J].地球信息科学学报,2015,17(10):1224-1233.Li L,Shi R H,Zhang L,et al. Data fusion of MODIS AOD and OMIAOD over East China using universal kriging[J]. Journal of Geo-Information Science,2015,17(10):1224-1233.
    [25]康丽泰.东亚地区吸收性气溶胶的时空分布及辐射强迫特征[D].兰州:兰州大学,2017.
    [26]赵莹,陈圣波,张莹.臭氧总量测绘分光仪和臭氧监测仪紫外辐照度数据的对比研究[J].科学技术与工程,2014,14(16):195-199.Zhao Y, Chen S B, Zhang Y, et al. Comparison between ultraviolet irradiation data of TOMS and OMI[J]. Science Technology and Engineering,2014,14(16):195-199.
    [27]葛拥晓,阿力甫·那思尔,吉力力·阿不都外力,等.咸海地区粉尘气溶胶动态变化及潜在扩散特征[J].中国沙漠,2016,36(5):1374-1380.Ge Y X,Naser A,Jilili A,et al. Dynamic change and potential transport characteristics of dust aerosol originating from the Aral Sea Basin[J]. Journal of Desert Research,2016,36(5):1374-1380.
    [28] Chung E C, Ramanathan V, Decremer D. Observationallyconstrained estimates of carbonaceous aerosol radiative forcing[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(29):11624-11629.
    [29]延昊,王长耀,牛铮,等.东亚沙尘源地、沙尘输送路径的遥感研究[J].地理科学进展,2002,21(1):90-94.Yan H,Wang C Y,Niu Z,et al. Remote sensing study of tracks and source areas of Eastern Asian dust[J]. Progress in Geography,2002,21(1):90-94.
    [30]戴昭鑫,张云芝,胡云锋,等.基于地面监测数据的2013~2015年长三角地区PM2. 5时空特征[J].长江流域资源与环境,2016,25(5):813-821.Dai Z X, Zhang Y Z, Hu Y F, et al. Spatial-temporal characteristics of PM2. 5in Yangtze River Delta(YRD)region based on the ground monitoring data from 2013-2015[J].Resources and Environment in the Yangtze Basin,2016,25(5):813-821.
    [31]肖思晗,于兴娜,朱彬,等.南京北郊黑碳气溶胶污染特征及影响因素分析[J].环境科学,2016,37(9):3280-3289.Xiao S H,Yu X N,Zhu B,et al. Characteristics of black carbon aerosol and influencing factors in northern suburbs of Nanjing[J]. Environmental Science,2016,37(9):3280-3289.
    [32] Gyawali M,Arnott W P,Lewis K,et al. In situ aerosol optics in Reno,NV,USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption[J]. Atmospheric Chemistry and Physics,2009,9(20):8007-8015.
    [33]范学花,陈洪滨,夏祥鳌.中国大气气溶胶辐射特性参数的观测与研究进展[J].大气科学,2013,37(2):477-498.Fan X H,Chen H B,Xia X A. Progress in observation studies of atmospheric aerosol radiative properties in China[J]. Chinese Journal of Atmospheric Sciences,2013,37(2):477-498.
    [34] Norman A L,Anlauf K,Hayden K,et al. Aerosol sulphate and its oxidation on the Pacific NW coast:S and O isotopes in PM2. 5[J]. Atmospheric Environment,2006,40(15):2676-2689.
    [35]宋宇,唐孝炎,张远航,等.夏季持续高温天气对北京市大气细粒子PM2. 5的影响[J].环境科学,2002,23(4):33-36.Song Y,Tang X Y,Zhang Y H,et al. Effects on fine particles by the continued high temperature weather in Beijing[J].Environmental Science,2002,23(4):33-36.
    [36]刘湾湾,刘琼,陈勇航,等.上海地区对流层低层臭氧及硫酸盐气溶胶时空分布特征研究[J].环境科学学报,2018,38(6):2214-2222.Liu W W,Liu Q,Chen Y H,et al. The temporal and spatial distribution characteristics of lower tropospheric ozone and sulfate aerosols in Shanghai[J]. Acta Scientiae Circumstantiae,2018,38(6):2214-2222.
    [37] Kaufman Y J,Fraser R S,Ferrare R A. Satellite measurements of Large-scale air pollution:method[J]. Journal of Geophysical Research:Atmospheres,1990,95(D7):9895-9909.
    [38] Xia X G,Chen H B,Li Z Q,et al. Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China[J]. Journal of Geophysical Research:Atmospheres,2007,112(D22):D22S02.
    [39]宋秀瑜,曹念文,赵成,等.南京地区相对湿度对气溶胶含量的影响[J].中国环境科学,2018,38(9):3240-3246.Song X Y,Cao N W,Zhao C,et al. Effect of relative humidity on aerosol content in Nanjing[J]. China Environmental Science,2018,38(9):3240-3246.
    [40]姚玲玲.中国及典型地区气溶胶光学厚度的时空分布特征及影响因素研究[D].杭州:浙江大学,2017.
    [41]黄观,刘伟,刘志红,等.黑碳气溶胶研究概况[J].灾害学,2015,30(2):205-214.Huang G,Liu W,Liu Z H,et al. A research overview of black carbon aerosols[J]. Journal of Catastrophology,2015,30(2):205-214.
    [42]孙俊英,张璐,沈小静,等.大气气溶胶散射吸湿增长特性研究进展[J].气象学报,2016,74(5):672-682.Sun J Y,Zhang L,Shen X J,et al. A review of the effects of relative humidity on aerosol scattering properties[J]. Acta Meteorologica Sinica,2016,74(5):672-682.
    [43] Qiu J H,Yang J H. Absorption properties of urban/suburban aerosols in China[J]. Advances in Atmospheric Sciences,2008,25(1):1-10.
    [44]康颖.基于地面和卫星数据分析中国地区气溶胶单次散射反照率的变化特征[D].兰州:甘肃农业大学,2018.
    [45]周寅.长三角地区大气气溶胶光学厚度遥感及时空变化规律研究[D].南京:南京信息工程大学,2014.
    [46]吴万宁,查勇,王强,等.南京仙林地区近地表消光系数变化及影响因素研究[J].环境科学与技术,2014,37(12):106-111.Wu W N,Zha Y,Wang Q,et al. Variation characteristics and influencing factors of extinction coefficient in xianlin area of Nanjing[J]. Environmental Science&Technology,2014,37(12):106-111.
    [47]付加锋,齐蒙,刘倩,等.黑碳气溶胶排放量测算及空间分布研究[J].科技导报,2018,36(2):38-46.Fu J F,Qi M,Liu Q,et al. The emission estimation and spatial distribution of black carbon aerosol[J]. Science&Technology Review,2018,36(2):38-46.
    [48]高嵩,许潇锋,陶风波,等.长三角地区近10年气溶胶时空分布特征[J].环境科学与技术,2017,40(9):192-202.Gao S, Xu X F, Tao F B, et al. Temporal and spatial distributions of aerosols over the Yangtze River Delta region in recent 10 years[J]. Environmental Science&Technology,2017,40(9):192-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700