用户名: 密码: 验证码:
纳滤工艺深度净化微污染水源水厂出水中试研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advanced Purification of Effluent from Micro-polluted Source Water Waterworks by Nanofiltration
  • 作者:张正磊 ; 张俸志 ; 周伟伟 ; 成小翔 ; 朱学武 ; 丁怀宇
  • 英文作者:ZHANG Zheng-lei;ZHANG Feng-zhi;ZHOU Wei-wei;CHENG Xiao-xiang;ZHU Xue-wu;DING Huai-yu;Department of Engineering Management,Shandong Urban Construction Vocational College;School of Municipal and Environmental Engineering,Shandong Jianzhu University;School of Environment,Harbin Institute of Technology;Huludao Bangyu Technology Co.Ltd.;
  • 关键词:纳滤 ; 微污染水源水 ; 消毒副产物 ; 深度处理 ; 荧光性有机物
  • 英文关键词:nanofiltration;;micro-polluted source water;;disinfection by-products;;advanced treatment;;fluorescent organic matter
  • 中文刊名:中国给水排水
  • 英文刊名:China Water & Wastewater
  • 机构:山东城市建设职业学院工程管理系;山东建筑大学市政与环境工程学院;哈尔滨工业大学环境学院;葫芦岛邦宇科技有限公司;
  • 出版日期:2019-08-01
  • 出版单位:中国给水排水
  • 年:2019
  • 期:15
  • 基金:国家重点研发计划项目(2017YFF0209903);; 山东省自然科学基金博士基金资助项目(ZR2018BEE036)
  • 语种:中文;
  • 页:45-50
  • 页数:6
  • CN:12-1073/TU
  • ISSN:1000-4602
  • 分类号:TU991.2
摘要
为提高出水水质、保障饮用水安全,探索常规+纳滤复合工艺在微污染水源水处理中的应用,通过中试研究该复合工艺对常规工艺出水水质的提升效果,并对微污染物截留特性进行了综合评价。结果表明,纳滤深度处理工艺可显著提高对DOC、COD_(Mn)、UV_(254)和荧光性有机物的去除效果,同时将出水浊度和颗粒数降至很低的水平。经纳滤处理后,可吸附有机卤化物、可同化有机碳和消毒副产物前驱物的浓度降低了80%以上,大大降低了消毒副产物生成量。经检测,微污染水源水厂滤后水中存在微量的多环芳烃和内分泌干扰物,由于检测出的多环芳烃多以疏水性小分子有机物为主,纳滤截留率仅在50%左右,而内分泌干扰物则以分子质量较大的溶解性有机物为主,大于纳滤膜膜孔,因而截留率可保持在95%以上。纳滤净化出水水质良好,充分保障了出水的化学安全性和生物安全性,因此可作为一种高效的微污染水源水深度处理技术。
        A conventional water treatment process combined with nanofiltration (NF) membrane advanced treatment process was applied in the treatment of micro-polluted source water to improve effluent quality and ensure drinking water safety. The treatment effect of the hybrid system was studied in a pilot test,and the interception characteristics of micro-pollutants were comprehensively evaluated. The results showed that NF advanced treatment process could significantly improve the removal efficiency of DOC,COD_(Mn),UV_(254) and fluorescent organic matters,which was also capable to reduce the turbidity and particle counts in effluent to a very low level. After NF purification,the concentrations of absorbable organic halogens (AOX),assimilable organic carbon (AOC) and disinfection by-product precursors were reduced by more than 80%,which greatly reduced the generation of disinfection by-products (DBPs). A small amount of polycyclic aromatic hydrocarbons (PAHs) and endocrine disruptors (EDCs) were detected in the filtered water. Since the detected PAHs were mainly hydrophobic small molecular organic substances,the rejection rate of the PAHs was only about 50%. Meanwhile,the EDCs were mainly composed of dissolved organic substances with larger molecular weight,whose molecular weights were larger than the nanofiltration membrane pores. Therefore,the rejection rate of EDCs remained above 95%. NF membrane produced high quality effluent,which fully guaranteed the chemical safety and biological safety of the effluent. Thus,it could be used as an efficient advanced treatment technology for the treatment of micro-polluted source water.
引文
[1]Mohammad A W,Teow Y H,Ang W L,et al.Nanofiltration membranes review:Recent advances and future prospects[J].Desalination,2015,356:226-254.
    [2]Boo C,Wang Y,Zucker I,et al.High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery[J].Environ Sci Technol,2018,52(13):7279-7288.
    [3]Park S,Nam T,You J,et al.Evaluating membrane fouling potentials of dissolved organic matter in brackish water[J].Water Res,2019,149:65-73.
    [4]Gai W,Zhao D L,Chung T S.Thin film nanocomposite hollow fiber membranes comprising Na+-functionalized carbon quantum dots for brackish water desalination[J].Water Res,2019,154:54-61.
    [5]Cheng X,Liang H,Ding A,et al.Effects of pre-ozonation on the ultrafiltration of different natural organic matter(NOM)fractions:Membrane fouling mitigation,prediction and mechanism[J].J Membr Sci,2016,505:15-25.
    [6]Cheng X,Wu D,Liang H,et al.Effect of sulfate radicalbased oxidation pretreatments for mitigating ceramic UFmembrane fouling caused by algal extracellular organic matter[J].Water Res,2018,145:39-49.
    [7]Gray S R,Ritchie C B,Tran T,et al.Effect of NOMcharacteristics and membrane type on microfiltration performance[J].Water Res,2007,41(17):3833-3841.
    [8]Childress A E,Elimelech M.Relating nanofiltration membrane performance to membrane charge(electrokinetic)characteristics[J].Environ Sci Technol,2000,34(17):3710-3716.
    [9]Fujioka T,Makabe R,Mori N,et al.Assessment of online bacterial particle counts for monitoring the performance of reverse osmosis membrane process in potable reuse[J].Sci Total Environ,2019,667:540-544.
    [10]Danby S G,Brown K,Wigley A M,et al.The effect of water hardness on surfactant deposition after washing and subsequent skin irritation in atopic dermatitis patients and healthy control subjects[J].J Invest Dermatol,2018,138(1):68-77.
    [11]Bai L,Liu Y,Bossa N,et al.Incorporation of cellulose nanocrystals(CNCs)into the polyamide layer of thinfilm composite(TFC)nanofiltration membranes for enhanced separation performance and antifouling properties[J].Environ Sci Technol,2018,52(19):11178-11187.
    [12]Cheng S,Oatley D L,Williams P M,et al.Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters[J].Water Res,2012,46(1):33-42.
    [13]Haddad M,Ohkame T,BérubéP R,et al.Performance of thin-film composite hollow fiber nanofiltration for the removal of dissolved Mn,Fe and NOM from domestic groundwater supplies[J].Water Res,2018,145:408-417.
    [14]García-Vaquero N,Lee E,Jiménez Casta1eda R,et al.Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility[J].Desalination,2014,347:94-102.
    [15]De Vera G A,Stalter D,Gernjak W,et al.Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation[J].Water Res,2015,87:49-58.
    [16]De Vera G A,Keller J,Gernjak W,et al.Biodegradability of DBP precursors after drinking water ozonation[J].Water Res,2016,106:550-561.
    [17]Hu H Y,Du Y,Wu Q Y,et al.Differences in dissolved organic matter between reclaimed water source and drinking water source[J].Sci Total Environ,2016,551/552:133-142.
    [18]Zhang Y,Chu W,Yao D,et al.Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes:Formation potential and integrated toxicity[J].J Environ Sci,2017,58:322-330.
    [19]Huang H,Zhu H,Gan W,et al.Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen,China[J].Chemosphere,2017,188:257-264.
    [20]Chen W,Westerhoff P,Leenheer J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environ Sci Technol,2003,37(24):5701-5710.
    [21]Carstea E M,Baker A,Bieroza M,et al.Continuous fluorescence excitation-emission matrix monitoring of river organic matter[J].Water Res,2010,44(18):5356-5366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700