用户名: 密码: 验证码:
褐煤的碳缓释特征及其对池塘底泥脱氮作用的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon release performance of lignite and its effect on nitrogen removal from pond sediments
  • 作者:曹娟 ; 刘兴国 ; 高美云 ; 朱浩 ; 曾宪磊 ; 刘雪
  • 英文作者:CAO Juan;LIU Xingguo;GAO Meiyun;ZHU Hao;ZENG Xianlei;LIU Xue;Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University;Centre for Research on Environmental Ecology and Fish Nutrion, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University;
  • 关键词:褐煤 ; 碳释放 ; 池塘底泥 ; 厌氧氨氧化 ; 反硝化
  • 英文关键词:lignite;;carbon release;;sediments;;anaerobic ammonia oxidation;;denitrification
  • 中文刊名:水产学报
  • 英文刊名:Journal of Fisheries of China
  • 机构:中国水产科学研究院渔业机械仪器研究所;上海海洋大学水产科学国家级实验教学示范中心;上海海洋大学农业农村部淡水水产种质资源重点实验室;上海海洋大学农业农村部鱼类营养与环境生态研究中心;
  • 出版日期:2018-12-03 13:34
  • 出版单位:水产学报
  • 年:2019
  • 期:04
  • 基金:现代农业产业技术体系专项(CARS-46);; 公益性行业(农业)科研专项(201503108);; 盐碱池塘生态工程构建配套技术(2016HY-ZD0603)~~
  • 语种:中文;
  • 页:277-286
  • 页数:10
  • CN:31-1283/S
  • ISSN:1000-0615
  • 分类号:X52
摘要
厌氧氨氧化和反硝化作用是底泥生物脱氮的主要过程,碳源是调控厌氧氨氧化和反硝化作用的关键因子。本研究以褐煤为对象,对褐煤的静态碳释情况及其对池塘底泥中脱氮作用的影响进行了研究。结果显示,褐煤在室温条件下的碳释放规律符合二级动力学方程,具备作为反硝化碳源的可行性;在脱氮实验中,发现褐煤对底泥上覆水体中的亚硝酸盐氮(NO_2~--N)的去除具有促进作用,NO_2~--N的去除率随褐煤浓度的增加而升高,当褐煤质量浓度为40g/L时,NO_2~--N去除率最高达99.61%,此时硝酸盐氮(NO_3~--N)的浓度也最低;同时发现,水体中氨氮(NH_4~+-N)氧化的最适褐煤质量浓度为10g/L,其去除率达99.39%;对底泥中的厌氧氨氧化菌群进行Illumina高通量测序发现,其中浮霉菌门占比最大(39.6%~71.8%),优势菌属为Candidatus Brocadia(13.9%~35.8%)和Desulfovibrio(17.1%~34.8%),添加褐煤组Candidatus Scalindua菌属比例高于未添加组;荧光定量PCR得出,随着褐煤质量浓度升高,底泥中的反硝化菌丰度呈增长趋势,而厌氧氨氧化菌丰度则低于无褐煤添加组,表明添加褐煤对底泥反硝化有促进作用,而对厌氧氨氧化有一定的抑制作用。研究表明,褐煤具备作为反硝化碳源的条件,可用于池塘养殖底泥脱氮作用。
        Anaerobic ammonium oxidation and denitrification are the main processes of biological nitrogen removal from sediments. Carbon sources are the key factors regulating anaerobic ammonium oxidation and denitrification. In this study, the static carbon release of lignite and its effect on nitrogen removal from pond sediment were studied. The results show that the carbon release rule of lignite at room temperature accords with the second-order kinetic equation and has the feasibility of being a denitrification carbon source.In the denitrification experiment, it was found that lignite promoted the removal of nitrite nitrogen(NO_2~--N) in the overlying water. The removal rate of NO_2~--N increased with the increase of lignite concentration. When the mass concentration of lignite was 40 g/L, the removal rate of NO_2~--N was up to 99.61%. At this time,the concentration of nitrate nitrogen(NO_3~--N) was also the lowest; at the same time, it was found that the optimum concentration of ammonia nitrogen(NH_4~+-N) in water was 10 g/L, and the removal rate was 99.39%. Illumina high-throughput sequencing of anaerobic ammonium oxidizing bacteria in the sediment found that the proportion of Fusarium was the largest(39.6%-71.8%), and the dominant genus was Candidatus Brocadia(13.9%-35.8%), Desulfovibrio(17.1%-34.8%), the proportion of Candidatus Scalindua added to the lignite group was higher than that of the unadded group; fluorescence quantitative PCR showed that with the increase of lignite mass concentration, the abundance of denitrifying bacteria in the sediment increased, while the abundance of anaerobic ammonium oxidizing bacteria was lower than that in the zero-brown coal addition group, indicating that the addition of lignite promoted the sediment denitrification. It has a certain inhibitory effect on anaerobic ammonium oxidation. Studies have shown that lignite has the conditions of denitrifying carbon source and can be used for denitrification of pond culture sediments.
引文
[1]舒廷飞,温琰茂,汤叶涛.养殖水环境中氮的循环与平衡[J].水产科学,2002,21(2):30-34.Shu T F,Wen Y M,Tang Y T.Cycle and budget balance of nitrogen in the cultivated water[J].Fisheries Science,2002,21(2):30-34(in Chinese).
    [2]陈瑾.池塘表层底泥反硝化菌丰度与群落结构的研究[D].武汉:华中农业大学,2014.Chen J.Assessment of abundance and composition of denitrifiers in the surface sediment of aquaculture ponds[D].Wuhan:Huazhong Agricultural University,2014(in Chinese).
    [3]Pathak B K,Kazama F,Saiki Y,et al.Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors[J].Bioresource Technology,2007,98(11):2201-2206.
    [4]郑平,吴明生,金仁村.有机物对ANAMMOX反应器运行性能的影响[J].环境科学学报,2006,26(7):1087-1092.Zheng P,Wu M S,Jin R C.Effect of organic matter on performance of ANAMMOX reactor[J].Acta Scientiae Circumstantiae,2006,26(7):1087-1092(in Chinese).
    [5]赖杨岚,周少奇.厌氧氨氧化与反硝化的协同作用特性研究[J].中国给水排水,2010,26(13):6-10.Lai Y L,Zhou S Q.Study on synergism characteristics of ANAMMOX and denitrification[J].China Water&Wastewater,2010,26(13):6-10(in Chinese).
    [6]张美雪,李芸,李军,等.低浓度乙酸盐诱导下厌氧氨氧化与异养反硝化高效耦合脱氮[J].环境工程学报,2016,10(11):6127-6132.Zhang M X,Li Y,Li J,et al.Nitrogen removal performance of anammox coupling heterotrophic denitrification in low concentration of acetate[J].Chinese Journal of Environmental Engineering,2016,10(11):6127-6132(in Chinese).
    [7]井柳新.褐煤作为固相有机碳源载体修复地下水硝酸盐污染试验研究[D].北京:中国地质大学,2011.Jing L X.The experiment research on using lignite as the solid-phase organic carbon-source to remove the nitrate from the groundwater[D].Beijing:China University of Geosciences,2011(in Chinese).
    [8]Miura K,Mae K,Okutsu H,et al.New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J].Energy&Fuels,1996,10(6):1196-1201.
    [9]Mae K,Maki T,Okutsu H,et al.Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks[J].Fuel,2000,79(3-4):417-425.
    [10]黄孝肖.竹炭对厌氧氨氧化反应的影响及其作用机制研究[D].杭州:浙江大学,2013.Huang X X.Effect of bamboo charcoal on the performance of anammox reactor and its mechanism[D].Hangzhou:Zhejiang University,2013(in Chinese).
    [11]van de Graaf A A,de Bruijn P,Robertson L A,et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J].Microbiology,1997,143(7):2415-2421.
    [12]Throb?ck I N,Johansson M,Rosenquist M,et al.Silver(Ag+)reduces denitrification and induces enrichment of novel nirK genotypes in soil[J].FEMS Microbiology Letters,2007,270(2):189-194.
    [13]Dang H Y,Chen R P,Wang L,et al.Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay,China[J].Applied and Environmental Microbiology,2010,76(21):7036-7047.
    [14]Hamersley M R,Lavik G,Woebken D,et al.Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J].Limnology and Oceanography,2007,52(3):923-933.
    [15]Zhu G B,Wang S Y,Feng X J,et al.Anammox bacterial abundance,biodiversity and activity in a constructed wetland[J].Environmental Science&Technology,2011,45(23):9951-9958.
    [16]贾伟.煤中小分子化合物对煤高温快速液化的影响[D].太原:太原理工大学,2010.Jia W.Study on the effect of small molecular compound in coal on quick coal liquefaction at high temperature[D]. Taiyuan:Taiyuan University of Technology,2010(in Chinese).
    [17]刘斌.厌氧氨氧化耦合异养反硝化反应器的启动研究[J].兰州交通大学学报,2016,35(4):107-110.Liu B.Start-up of anaerobic ammonia oxidation coupled with heterotrophic denitrifying in UASB-biofilm Reactor[J].Journal of Lanzhou Jiaotong University,2016,35(4):107-110(in Chinese).
    [18]Wenk C B,Blees J,Zopfi J,et al.Anaerobic ammonium oxidation(anammox)bacteria and sulfide‐dependent denitrifiers coexist in the water column of a meromictic south-alpine lake[J].Limnology and Oceanography,2013,58(1):1-12.
    [19]沈李东,胡宝兰,郑平,等.西湖底泥中厌氧氨氧化菌的分子生物学检测[J].环境科学学报,2011,31(8):1609-1615.Shen L D,Hu B L,Zheng P,et al.Molecular detection of anammox bacteria in the sediment of West Lake,Hangzhou[J].Acta Scientiae Circumstantiae,2011,31(8):1609-1615(in Chinese).
    [20]Kartal B,Rattray J,van Niftrik L A,et al.Candidatus"Anammoxoglobus propionicus"a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J].Systematic and Applied Microbiology,2007,30(1):39-49.
    [21]邵留,徐祖信,王晟,等.新型反硝化固体碳源释碳性能研究[J].环境科学,2011,32(8):2323-2327.Shao L,Xu Z X,Wang S,et al.Performance of new solid carbon source materials for denitrification[J].Environmental Science,2011,32(8):2323-2327(in Chinese).
    [22]刘常敬,李泽兵,郑照明,等.苯酚对厌氧氨氧化工艺耦合反硝化的启动及脱氮性能的影响[J].中国环境科学,2014,34(5):1145-1151.Liu C J,Li Z B,Zheng Z M,et al.Effect of phenol on startup and nitrogen removal performance of anammox coupling denitrifying[J].China Environmental Science,2014,34(5):1145-1151(in Chinese).
    [23]Kartal B,Kuypers M M M,Lavik G,et al.Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium[J].Environmental Microbiology,2007,9(3):635-642.
    [24]高美云,刘兴国,曾宪磊,等.有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响[J].环境工程学报,2018,12(1):49-56.Gao M Y,Liu X G,Zeng X L,et al.Effects of organic carbon for denitrification and anaerobic ammonium oxidation in sediments of aquaculture pond[J].Chinese Journal of Environmental Engineering,2018,12(1):49-56(in Chinese).
    [25]Ramos A F,Gómez M A,Hontoria E,et al.Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor[J].Journal of Hazardous Materials,2007,142(1-2):175-183.
    [26]陈重军,朱为静,黄孝肖,等.厌氧氨氧化启动过程Anammox菌富集规律和差异分析[J].生物工程学报,2014,30(6):891-900.Chen C J,Zhu W J,Huang X X,et al.Enrichment regulation of Anammox bacteria in the Anammox startup process[J].Chinese Journal of Biotechnology,2014,30(6):891-900(in Chinese).
    [27]王亚宜,黎力,马骁,等.厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J].环境科学学报,2014,34(6):1362-1374.Wang Y Y,Li L,Ma X,et al.Bio-characteristics of anammox bacteria and CANON anammox process[J].Acta Scientiae Circumstantiae,2014,34(6):1362-1374(in Chinese).
    [28]陈重军,张海芹,汪瑶琪,等.基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J].环境科学,2016,37(7):2652-2658.Chen C J,Zhang H Q,Wang Y Q,et al.Characteristics of microbial community in each compartment of ABRAnammox reactor based on high-throughput sequencing[J].Environmental Science,2016,37(7):2652-2658(in Chinese).
    [29]Puyol D,Carvajal-Arroyo J M,Garcia B,et al.Kinetic characterization of Brocadia spp.-dominated anammox cultures[J].Bioresource Technology,2013,139(7):94-100.
    [30]陶怡乐,温东辉.细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响[J].微生物学通报,2016,43(1):172-181.Tao Y L,Wen D H.Dissimilatory nitrate reduction to ammonium:the potential and impacts in estuarine regions[J].Microbiology China,2016,43(1):172-181(in Chinese).
    [31]Guo Y H,Gong H L,Guo X Y.Rhizosphere bacterial community of Typha angustifolia L.and water quality in a river wetland supplied with reclaimed water[J].Applied Microbiology and Biotechnology,2015,99(6):2883-2893.
    [32]曹军伟,董纯明,曹宏斌,等.焦化废水中酚降解菌及其降解基因的研究[J].环境科学,2011,32(2):560-566.Cao J W,Dong C M,Cao H B,et al.Isolation of phenoldegrading bacteria from coking wastewater and their degradation gene[J].Environmental Science,2011,32 (2):560-566(in Chinese).
    [33]袁利娟,姜立春,彭正松,等.一株高效苯酚降解菌的选育及降酚性能研究[J].微生物学通报,2009,36(4):587-592.Yuan L J,Jiang L C,Peng Z S,et al.Breeding of the high phenol-degraded bacterium JY01 and study on phenolic biodegradation[J].Microbiology China,2009,36(4):587-592(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700