用户名: 密码: 验证码:
樱桃番茄气孔特征和气体交换参数对干旱胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of Stomatal Traits and Leaf Gas Exchange of Cherry Tomato to Drought Stress
  • 作者:张浩 ; 郝立华 ; 叶嘉 ; 郭丽丽 ; 李菲 ; 郑云普
  • 英文作者:ZHANG Hao;HAO Lihua;YE Jia;GUO Lili;LI Fei;ZHENG Yunpu;School of Life Science and Engineering,Handan College;School of Water Conservancy and Hydropower,Hebei University of Engineering;Wild Plant Resources Research Centre in Taihang Mountain of Southern Hebei Province;
  • 关键词:干旱胁迫 ; 净光合速率 ; 水分利用效率 ; 气孔特征 ; 气体交换效率 ; 叶绿素含量
  • 英文关键词:drought stress;;net photosynthetic rates;;water use efficiency;;stomatal traits;;gas exchange efficiency;;chlorophyll content
  • 中文刊名:北方园艺
  • 英文刊名:Northern Horticulture
  • 机构:邯郸学院生命科学与工程学院;河北工程大学水利水电学院;河北省高校冀南太行山区野生资源植物应用研发中心;
  • 出版日期:2019-01-25
  • 出版单位:北方园艺
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金青年资助项目(31400418);; 河北省自然科学基金面上资助项目(C2016402088);; 河北省高等学校青年拔尖人才计划资助项目(BJ2016012);; 河北省引进留学人员资助项目(CN201702);; 干旱气象科学研究基金资助项目(IAM201702);; 中国博士后科学基金面上资助项目(2014M561044);中国博士后科学基金特别资助项目(2016T90128);; 河北省高等学校科学技术研究资助项目(QN2015324);; 河北省高等学校科学技术研究重点资助项目(ZD2017302);; 邯郸学院校级科研资助项目(15217,15105)
  • 语种:中文;
  • 页:20-28
  • 页数:9
  • CN:23-1247/S
  • ISSN:1001-0009
  • 分类号:S423;S641.2
摘要
以樱桃番茄为试材,采用基质培养的方法,使用不同浓度PEG 6000(0、5%、10%、15%)模拟干旱胁迫,研究了樱桃番茄叶片气孔特征、气体交换过程和叶绿素素含量对干旱胁迫的响应,以期为提升樱桃番茄在干旱地区土壤种植效率以及耐干旱品种的选育提供参考依据。结果表明:不同干旱处理对气孔长度、气孔周长、气孔面积、气孔宽度和气孔形状指数均产生显著的影响(P<0.05),除了气孔宽度外,均随着干旱胁迫的加剧而减少。随着干旱胁迫的加剧净光合反应速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)均呈现明显下降趋势(P<0.05)。但是,樱桃番茄叶片的细胞间CO_2浓度(Ci)随着干旱胁迫的加剧而升高,且与对照存在显著差异(P<0.05)。另外,干旱胁迫导致樱桃番茄叶片的水分利用效率(WUE)呈先减少后增加的趋势,但均小于对照。此外,樱桃番茄叶片的叶绿素含量随着干旱胁迫加剧呈现先上升后下降的趋势。表明干旱胁迫条件下樱桃番茄叶片主要通过调整单个气孔结构(气孔开度大小)及气孔分布特征(气孔密度和空间分布格局)及叶绿素含量来进一步优化气体交换效率。该研究结果不仅有助于深入理解干旱胁迫对樱桃番茄气孔特征、气体交换过程和叶绿素含量之间关系的影响机理,而且还将为提升樱桃番茄在干旱地区土壤种植效率以及耐干旱品种的选育提供参考依据。
        To examine the responses of stomatal traits and gas exchange of cherry tomato to drought stress,cherry tomato seedlings were grown in growth chambers for 15 days with different PEG 6000 concentrations of nutrition medium including control(CK,0%),mild water stress(5%),moderate water stress(10%),and severe water stress(15%).The results showed that the stomatal length,stomatal width,stomatal perimeter,stomatal area and stomatal shape index of cherry tomato seedlings were substantially affected by drought stress(P<0.05),but their maximum values were lower than control,except stomatal width.The net photosynthetic rate(Pn),the transpiration rates(Tr)and stomatal conductance(Gs)of cherry tomato seedling was gradually decreased with the increase of drought stress,but intercellular CO_2concentration(Ci)were increased with increasing of drought stress,and significantly higher than Control(P<0.05).Moreover,leaf water use efficiency(WUE)decreases firstly and then increases with increasing of drought stress.In addition,the chlorophyll content featured a bell-shape curve with the increases of drought stress.These results suggested that cherry tomato might maximize the leaf gas exchange efficiency via changing the aperture size and shape of single stoma,the stomatal distribution(stomatal density and spatial distribution pattern of stomata)under salinity stress and the chlorophyll content.The results might be not only important for understanding the relationships among stomatal traits,leaf gas exchange,and chlorophyll content under drought stress,but also provide data and theoretical support for planting cherry tomato on drought soil and selection drought tolerance cherry tomato cultivars.
引文
[1] COLLINS W D,CRAIG A P,TRUESDALE J E,et al.The integrated earth system model(IESM):Formulation and functionality[J].Geoscientific Model Development,2015,8(7):2203-2219.
    [2] ANATOLY I K,BAIR Z T,BATOR V S,et al.Land aridization in the context of global warming:A case study of Transbaikalia[J].Journal of Resources and Ecology,2017,8(2):141-147.
    [3]程静,陶建平.全球气候变暖背景下农业干旱灾害与粮食安全[J].经济地理,2010,30(9):1524-1528.
    [4]胡实,莫兴国,林忠辉.未来气候情景下我国北方地区干旱时空变化趋势[J].干旱区地理,2015,38(2):239-248.
    [5]符淙斌,安芷生.我国北方干旱化研究:面向国家需求的全球变化科学问题[J].地学前缘,2015,9(2):271-275.
    [6]李瑞姣,陈献志,岳春雷,等.干旱胁迫对日本荚蒾幼苗光合生理特性的影响[J].生态学报,2018,38(6):2041-2047.
    [7]王凯,赵成姣,邓杰,等.成年侧柏和刺槐对春季干旱的适应策略[J].生态学杂志,2017,36(11):3176-3181.
    [8]张仁和,郑友军,马国胜,等.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J].生态学报,2011,31(5):1303-1311.
    [9]陆燕元,马焕成,李昊民,等.土壤干旱对转基因甘薯光合曲线的响应[J].生态学报,2015,35(7):2155-2160.
    [10]王鑫,李志强,谷卫彬,等.盐胁迫下高粱新生叶片结构和光合特性的系统调控[J].作物学报,2010,36(11):1941-1949.
    [11]蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特征的影响[J].生态学报,2011,31(9):2430-2439.
    [12]卢广超,许建新,薛立,等.干旱胁迫下4种常用植物幼苗的光合和荧光特性综合评价[J].生态学报,2013,33(24):7872-7881.
    [13]姚春娟,郭圣茂,马英超,等.干旱胁迫对4种决明属植物光合作用和叶绿素荧光特性的影响[J].草业科学,2017,34(9):1880-1888.
    [14]ZHANG S R.A discussion on chlorophyll fluorescence kinetics parameters and their significance[J].Chinese Bulletin of Botany,1999,16(4):444-448.
    [15]刘汉玄,吴沿友,孙卫红,等.干旱对番茄幼苗光合和某些生理指标的影响[J].广西植物,2016,36(3):303-307.
    [16] ATTIPALLI R R,KOLLURU V C,MUNUSAMY V.Drought induced responses of photosynthesis and antioxidant metabolism in higher plant[J].Plant Physiol,2004,161:1189-1202.
    [17]张浩,郭丽丽,叶嘉,等.樱桃番茄叶片气孔特征和气体交换过程对NaCl胁迫的响应[J].农业工程学报,2018,34(5):107-113.
    [18]郑云普,徐明,王建书,等.玉米叶片气孔特征及气体交换过程对气候变暖的响应[J].作物学报,2015,41(4):601-612.
    [19]PAIVA E,LEMOS J,OLIVEIRA D.Imbibition of Swietenia macrophylla(Meliaceae)seeds:The role of stomata[J].Annals of Botany,2006,98(1):213-217.
    [20]杨惠敏,王根轩.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响[J].植物生态学报,2001,25(3):312-316.
    [21]胡妍妍,白利娟,张婷,等.干旱胁迫对德国补血草气孔特征及生理特性的影响[J].湖北农业科学,2015,54(20):5066-5069.
    [22]孟雷,李磊鑫,陈温福,等.水分胁迫对水稻叶片气孔密度大小及净光合速率的影响[J].沈阳农业大学学报,1999,30(5):477-480.
    [23]SAM O,JEREZ E,DELL A J,et al.Water stress induced changes in anatomy of tomato leaf epidermes[J].Biologia Plantarum,2000,43(2):275-277.
    [24]徐坤,邹琦,赵燕.土壤水分胁迫与遮荫对生姜生长特性的影响[J].应用生态学报,2003,14(10):1645-1648.
    [25]贾瑞丰,徐大平,杨曾奖,等.干旱胁迫对降香黄檀幼苗光合生理特性的影响[J].西北植物学报,2013,33(6):1197-1202.
    [26]吴顺,张雪芹,蔡燕.干旱胁迫对黄瓜幼苗叶绿素含量和光合特性的影响[J].中国农学通报,2014,30(1):133-137.
    [27]韩博,李志勇,郭浩,等.干旱胁迫下5种幼苗光合特性的研究[J].林业科学研究,2014,27(1):92-98.
    [28]陈龙涛,高润梅,石晓东.干旱胁迫对华北落叶松和油松幼苗叶绿素含量与根系活力的影响[J].农学学报,2017,7(3):67-72.
    [29]程智慧,孟焕文,STEPHEN A R,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林大学学报(自然科学版),2002,30(6):93-96.
    [30]吴际友,李志辉,刘球,等.干旱胁迫对红椿无性系幼苗叶片相对含水量和叶绿素含量的影响[J].中国农学通报,2013,29(4):19-22.
    [31]王英典,刘宁,刘全儒,等.植物生物学实验指导[M].北京:高等教育出版,2011.
    [32]HETHERINGTON A M,WOODWARD F I.The role of stomata in sensing and driving environmental change[J].Nature,2003,424:901-908.
    [33]FRANKS P J,BEERLING D J.Maximum leaf conductance driven by CO2effects on stomatal size and density over geologic time[J].Proceedings of the National Academy of Sciences,2009,106:10343-10347.
    [34]HAWORTH M,HEATH J,MCELWAIN J C.Differences in the response sensitivity of stomatal index to atmospheric CO2among four genera of Cupressaceae conifers[J].Annals of Botany,2010,105:411-418.
    [35]王瑞丽,于贵瑞,何念鹏,等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J].生态学报,2016,36(8):2175-2184.
    [36]ZHENG Y P,XU M,HOU R X,et al.Effects of experimental warming on stomatal traits in leaves of maize(Zea may L.)[J].Ecology and Evolution,2013(3):3095-3111.
    [37]郑云普,徐明,王建书,等.气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响[J].生态学报,2016,36(6):1526-1538.
    [38]BETHKE P C,DREW M C.Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J].Plant Physiology,1992,99:219-226.
    [39]WANG H C,NGWENYAMA N,LIU Y D,et al.Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis[J].Plant Cell,2007(19):63-73.
    [40]张立荣,牛海山,汪诗平,等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报,2010,30(24):6961-6969.
    [41]JIN B,WANG L,WANG J,et al.The effect of experimental warming on leaf functional traits,leaf structure and leaf biochemistry in Arabidopsis thaliana[J].BMC Plant Biology,2011(11):35.
    [42]王春艳,庞艳梅,李茂松,等.干旱胁迫对大豆气孔特征和光合参数的影响[J].中国农业科技导报,2013,15(1):109-115.
    [43]INAMULLAHA I,ISODA A.Adaptive responses of soybean and cotton to water stressⅠ.Transpiration changes in relation to stomatal area and stomatal conductance[J].Plant Production Science,2005,8(1):16-26.
    [44]于海秋,武志海,沈秀瑛,等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报,2003,25(3):239-242.
    [45]XU Z Z,ZHOU G S.Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J].Journal of Experimental Botany,2008,59(12):3317-3325.
    [46]赵和文,崔金腾,王杰,等.干旱胁迫下常春藤响应的生理生化机制[J].中国农学通报,2013,29(7):12-19.
    [47]张其德.盐胁迫对植物及其光合作用的影响[J].植物杂志,1999(6):32-33.
    [48]APPLEE M E,OLSZYK D M,ORMROD D P,et al.Morphology and stomatal function of Douglas fir needles exposed to climate change:Elevated CO2and temperature[J].International Journal of Plant Science,2000,161:127-132.
    [49]郭延平,周慧芬,曾光辉,等.高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响[J].应用生态学报,2003,14(6):867-870.
    [50]SHIMAZAKI K,DOI M,ASSMANN S M.Light regulation of stomatal movement[J].Annual Review of Plant Biology,2007,58:219-247.
    [51]HAN C,LIU Q,YANG Y.Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings[J].Plant Growth&Regulation,2009,58:153-162.
    [52]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-122.
    [53]张婷华,杨再强,李永.水分胁迫对番茄叶片光合特性和叶绿素荧光参数的影响[J].灌溉排水学报,2013,32(6):72-76.
    [54]柴胜丰,唐健民,王满莲,等.干旱胁迫对金花茶幼苗光合生理特性的影响[J].西北植物学报,2015,35(2):322-328.
    [55]安玉艳,梁宗锁,韩蕊莲,等.土壤干旱对黄土高原3个常见树种幼苗水分代谢及生长的影响[J].西北植物学报,2007,27(1):91-97.
    [56]田知海,陈励虹,刘东玉.干旱胁迫下苣荬菜光合性能及水分利用效率研究[J].衡水学院学报,2010,12(1):85-88.
    [57]张明生,谈锋.水分胁迫下甘薯叶绿素a/b比值的变化及其与抗旱性的关系[J].种子,2001(4):23-25.
    [58]李耕,高辉远,赵斌,等.灌浆期干旱胁迫对玉米叶片光系统活性的影响[J].作物学报,2009,35(10):1916-1922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700