用户名: 密码: 验证码:
基于卫星遥感的湖南省甲醛时空分布及影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal Distribution of Formaldehyde in Hunan,China and Its Influence Factors Analysis Based on Satellite Remote Sensing Data
  • 作者:史家 ; 巨天珍 ; 张志成 ; 裴子辉
  • 英文作者:SHI Jia;JU Tianzhen;ZHANNG Zhicheng;PEI Zihui;College of Geography and Environmental Science,Northwest Normal University;Kongtong District Environmental Protection Agency;Lanzhou Environmental Protection Agency;
  • 关键词:OMI ; 甲醛柱浓度 ; 时空分布 ; 影响因素 ; 湖南省
  • 英文关键词:OMI;;formaldehyde column concentration;;temporal and spatial distribution;;influencing factors;;Hunan Province
  • 中文刊名:地球与环境
  • 英文刊名:Earth and Environment
  • 机构:西北师范大学地理与环境科学学院;平凉市崆峒区环境保护局;兰州市环境保护局;
  • 出版日期:2019-07-12 16:07
  • 出版单位:地球与环境
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划项目(2016YFC0500907);; 甘肃省重点研发计划(17YF1FA120);; 兰州市科技计划(2017RC69)
  • 语种:中文;
  • 页:47-57
  • 页数:11
  • CN:52-1139/P
  • ISSN:1672-9250
  • 分类号:X51
摘要
利用OMI遥感的甲醛逐日数据、MODIS传感器监测的NDVI数据以及湖南省能源消耗和氮氧化物排放量数据,对2009~2017年湖南省对流层大气中甲醛柱浓度时空变化特征及其影响因素进行了探究。结果表明:湖南省甲醛柱浓度总体空间分布具有西部山区低、北部洞庭湖平原和南部南岭地区高的特征;近九年湖南省甲醛柱浓度时间分布呈先增加后减小的趋势,最高值出现在2012年,最低值出现在2017年;年内甲醛柱浓度值夏季最高,秋季、春季次之,冬季最低,最低值出现在12月,最高值出现于9月;影响因素中地形与风向因素对甲醛柱浓度的空间分布有一定的影响,甲醛柱浓度与温度的相关性较高,降水次之,植被对甲醛的产生有很大的贡献,能源消耗与氮氧化物排放是湖南省甲醛柱浓度变化的重要人为因素。
        This study investigated the temporal and spatial distribution characteristics of formaldehyde column concentrations in troposphere in Hunan,China from 2009 to 2017 and explored the influence factors by comprehensive analyses on daily formaldehyde data monitored by OMI sensors,NDVI data monitored by MODIS sensors,energy consumption data and nitrogen oxide emission data of the Hunan Province. The results showed that the overall spatial distribution of formaldehyde column concentration in Hunan was that the formaldehyde column concentration was low in the western mountainous area and was high in the north Dongting Lake plain and the southern Nanling area. During the past 9 years,formaldehyde column concentrations in Hunan showed a trend of increasing and then decreasing with the highest concentration appeared in 2012 and the lowest concentration appeared in 2017. The formaldehyde column concentration varied seasonally,highest in summer and lowest in winter,the highest concentration appeared in September and the lowest concentration appeared in December. The topography and the wind direction showed certain influences on the spatial distribution of formaldehyde column concentration,the formaldehyde column concentration showed a strong correlation with temperature and a good correlation with precipitation,vegetation was an important formaldehyde contributor,while the energy consumption and the nitrogen oxide emission in Hunan were of important anthropogenic factors.
引文
[1]钟禾.甲醛被列为一类致癌物质[J].福建质量管理,2005(2):44-45.
    [2] United States Environmental Protection Agency. Technical support document EPA’s 2011 national-scale air toxics assessment[EB/OL].https://www.epa.gov/sites/production/files/2015-12/documents/2011-nata-tsd.pdf,2015-12-30/2019-01-22.
    [3] Scheffe R D,Strum M,Phillips S B. Hybrid Modeling approach to estimate exposures of hazardous air pollutants(HAPs)for the national air toxics assessment(NATA)[J]. Environmental Science&Technology,2016,50:12356-12364.
    [4] Strum M,Scheffe R. National review of ambient air toxics observations[J]. Journal of the Air&Waste Management Association,2016,66:120-133.
    [5] Tang X J,Bai Y,Daong A,et al. Formaldehyde in China:Production,consumption,exposure levels,and health effects[J]. Environment International,2009,35(8):1210-1233.
    [6]崔莲.工业化与城市化进程对大气污染的影响[D].上海:上海社会科学院,2016.
    [7]顾达萨,邵敏,陆思华.城市大气中甲醛来源分析的示踪技术[J].北京大学学报(自然科学版),2008(2):317-322
    [8] Luecken D J,Napelenok S L,Strum M,et al. Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States[J]. Environmental Science&Technology,2018,52(8):4668-4675.
    [9] Guenther A,Hewitt C N,Erickson D,et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research,1995(100):8873-8892.
    [10] Guenther A,Geron C,Pierce T,et al. Natural emissions of non-methane volatile organic compounds,carbon monoxide,and oxides of nitrogen from North American[J]. Atmospheric Environment,2000(34):2205-2230.
    [11]谭衢霖,邵芸.遥感技术在环境污染监测中的应用[J].遥感技术与应用,2000(4):246-251.
    [12] Chance K,Palmer P I,Spurr R J D,et al. Satellite observations of formaldehyde over North America from GOME[J]. Geophysical Research Letters,2000,27(21):3461-3464.
    [13] Wittrock F,Richter A,Oetjen H,et al. Simultaneous global observations of glyoxal and formaldehyde from space[J]. Geophysical Research Letters,2006,33(16):L16804.
    [14] De Smedt I,Van Roozendael M,Stavrakou T,et al. Improved retrieval of global tropospheric formaldehyde columns from GOME-2/Met Op-A addressing noise reduction and instrumental degradation issues[J]. Atmospheric Measurement Techniques,2012,5(11):2933-2949.
    [15] Gonzlez Abad G,Liu X,Chance K,et al. Updated smithsonian astrophysical observatory ozone monitoring instrument(SAO OMI)formaldehyde retrieval[J]. Atmospheric Measurement Techniques,2015,8(1):19-32.
    [16] Smedt I D,Stavrakou T,Müller J F,et al. H2CO columns retrieved from GOME-2:First scientific results and progress towards the development of an operational product[C] Eumetsat Meteorological Satellite Conference. 2009.
    [17] Zhu L,Jacob D J,Keutsch F N,et al. Formaldehyde(HCHO)as a hazardous air pollutant:Mapping surface air concentrations from satellite and inferring cancer risks in the United States[J]. Environmental Science&Technology,2017,51:5650-5657.
    [18] Boeke N L,Marshall J D,Alvarez S,et al. Formaldehyde columns from the ozone monitoring instrument:Urban versus background levels and evaluation using aircraft data and a global model[J]. Journal of Geophysical Research Atmospheres,2011,116(D5):D05303.
    [19] Millet D B,Jacob D J,Turquety S,et al. Formaldehyde distribution over North America:Implications for satellite retrievals of formaldehyde columns and isoprene emission[J]. Journal of Geophysical Research Atmospheres,2006,111(D24):4057-4065.
    [20]谢顺涛,巨天珍,葛建团,等.基于卫星遥感中国甲醛的时空分布及影响因子[J].中国环境科学,2018,38(5):1677-1684.
    [21]林必元,李敏娴.洞庭湖湖陆风特征与降水[J].南京气象学院学报,1988(1):78-88.
    [22]邓楚雄,李民,宾津佑.湖南省人口分布格局时空变化特征及主要影响因素分析[J].经济地理,2017(12):41-48.
    [23]陈月霞,曹琳,杨淑萍.气温对大气主要污染物的影响[J].现代农业科技,2011(10):277-278.
    [24]杨叶,李立清,马卫武,等.相对湿度、温度对胶合板甲醛释放的影响[J].中国环境科学,2016,36(2):390-397.
    [25] Atkinson R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment,2000,34(12):2063-2101.
    [26]张玉洁,庞小兵.北京市植物排放的异戊二烯对大气中甲醛的贡献[J].环境科学,2009,30(4):976-981.
    [27]宁文涛,赵善伦.东亚地区生物源异戊二烯排放的估算[J].绿色科技,2012(4):209-212.
    [28] Garcia A,Volkamer R,Molina L T,et al. Separation of emitted and photochemical formaldehyde in Mexico city using a statistical analysis and a new pair of gas-phase tracers[J]. Atmospheric Chemistry&Physics,2006,6(12):4545-4557.
    [29]毛凌琳,李志.湖南省能源消费现状、影响因素及其对策[J].现代商贸工业,2017(24):5-6.
    [30] Luecken D J,Hutzell W T,Strum M L,et al. Regional sources of atmospheric formaldehyde and acetaldehyde,and implications for atmospheric modeling[J]. Atmospheric Environment,2012,47:477-490.
    [31]刘璐.机动车排放VOCs和NOX对形成大气光化学氧化剂影响的模拟[D].西安:长安大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700